高温高圧水による CCA 木材からの処理剤の除去

日大生産工(院)〇梅 暁志

日大生產工 岡田昌樹、南澤宏明、佐藤敏幸、日秋俊彦

【背景】

木材は、建築材料として古くから世界中で使用 され、環境に調和する良質な材料である。しかし ながら、何も加工しない木材は長期保存すること が困難であるため、建築分野での耐久性能に対す る要求が高まるにつれ、防腐・防蟻処理木材の需 要が増加した。CCA木材は、クロム(Cr)、銅(Cu)、 ヒ素(As)を含む薬液を用いて防腐・防蟻処理を施 した木材のことで、1933年にインドで開発されて 以来、世界的に建築材料として使用されてきた。 CCA木材中にはAs(V)やCr(VI)といった有害物が 含まれるため、廃材からの溶出等による環境汚染 や人体への悪影響が懸念され、CCA廃材からの処 理剤の除去が課題となっている。

本研究では、温度圧力操作により極性を大幅に 変化可能な高温高圧水に着目し、CCA木材からの 処理剤の抽出除去を目的として、検討を行ったの で報告する。

【実験】

実験には電磁撹拌機付半回分式高温高圧装置 (AKICO 社製 内容積 207 ml) を用いた。反応 器内には、チップ状の CCA 木材(米松)約 3g を仕 込んだ。木材チップは固体差を減らすため、予め 6g 程度量り取り、十分攪拌した後、実験用に 3g と参照用に 3g 分け、実験前後の重金属量を比較 した。60℃のホットプレートで乾燥した試料とし てチップ状の CCA 木材(米松)3g を反応器に入 れた後、純水を所定温度まで加熱後、ポンプによ り流量 20g/min で抽出器内に導入した。抽出後の 溶液は、冷却、減圧後回収した。圧力は背圧弁 (AKICO 社製)により 20MPa に設定し、抽出器内 温度は 50~250℃、攪拌回転数 300rpm とし、120 分間抽出を行った。抽出液は5分ごとに回収し、 pH 測定、原子吸光分析または ICP 発光分析によ る金属濃度測定、TOC 濃度測定を行った。また、

実験後の木材残渣は約60℃のホットプレート乾燥後、重量を測定した。なお、実験において反応器内温度は抽出開始後10~20分程度で所定温度に到達した。

図<u>1</u>. 高温高圧水を用いたCCA 木材処理装置

【結果と考察】

各温度における抽出液中のCu、Cr、As、TOC (全有機炭素)濃度、木材の重量減少率、抽出液 のpHの経時変化を図2~5に示す。まず、120分間 のCuおよびTOC濃度は、温度上昇とともに増加 した。また、反応器内温度が所定温度に到達する 10~20分程度で最大値を示し、その後減少する傾 向となった。Crについても同様の傾向であった。 また、反応前後の木材重量から評価した重量減少 率は温度上昇と共に増加した。次に、pH測定から、 高温処理後の回収液ほどpHは低い値を示すこと がわかった。Pizzi¹⁾によると、CCA薬液のpHは セルロースやリグニン骨格の一つであるグルコ ースやグアイアコール共存下では、薬液中の重金 属成分がこれら有機物と錯形成をすることによ

Remove of Agents from CCA-treated Wood by High-Temperature and Pressure Water. Xiaozhi MEI, Masaki OKADA, Hiroaki MINAMIZAWA, Toshiyuki SATOU, and Toshihiko HIAKI

5-24

り、時間の経過とともに酸性から中性側に変化す ると報告している。この事から高温高圧水抽出後 のpHの低下はCCA木材からの重金属の溶出に関 係していると考えている。一方で、温度上昇にと もなうTOCの増加は、リグニンやへミセルロース 成分の溶出に起因するものと考えられる²⁾。これ らを考慮すると、回収液中の重金属は単に重金属 イオンとして溶解したものだけではなく、リグニ ンやへミセルロース成分と錯形成をした状態を 維持した溶出物も存在するものと考える。

【文献】

1) A Pizzi, J. Polym. Sci. Polym. Chem. Ed., 19, 3104(1981).

2) M. Sasaki, T. Adschiri, K. Arai, Biores. Teoh.,86,301(2003).