ジスルファンニトリル配位子用いた Pd(II)錯体の発光特性,および 配位子への置換基導入

1. 緒言

発光性金属錯体に用いられる配位子は、酸素 や窒素などの配位部位に金属が配位結合した 錯体が多く、中心金属は、ランタノイド族を始 め、Pt(II)、Ir(III) 錯体が数多く報告されている¹⁾。 しかし、Pt(II) と同族の Pd(II) 錯体では、Pd(II) の d⁸電子が関与する d-d 遷移がエネルギー的に近 接しているため、Pd(II) の発光性金属錯体は稀 である²⁾。

当研究室では、両末端に求核性を持つ窒素を 有する N,N-ビス[ニトリロ(ジフェニル)- λ^6 -スル ファニル]ジフェニルスルファンジイミド Ph₂S(=N-S(Ph₂)S=N)₂ (ndsdsd) 配位子を合成し^{3a)}, これまでに Co(II), Ni(II), Cu(II) などの遷移金属 イオンを用いた ndsdsd 錯体の合成に成功して おり、それらの分子構造を明らかにしている^{3b)}。 本研究では、ndsdsd を配位子とする Pd(II) 錯体 を合成し、得られた Pd(II) 錯体の分子構造およ び発光特性を以下に報告する。

2 実験

2.1 ndsdsd 配位子の新規合成法と置換基導入の 試み

ndsdsd 配位子の新規合成法は,既知の方法で 合成した *S,S*-ジフェニルスルホンジイミド (0.2 g, 0.1 mmol) と *N*-(トリルシリル)ジエチルアミ ン (0.4 ml, 0.1 mmol) をアセトニトリル中, 60 °C, 5 h 反応させることにより, TMS 化を行った。そ の後,フルオロ(ジフェニル)-λ⁶-スルファンニト リル (0.4 g, 0.2 mmol) を加え, アセトニトリル中, 80 °C, 24 h 反応させ,再結晶 (アセトニトリル/ エーテル)による精製を行った。

置換基導入の合成は, *p*-位に *t*-Bu 基を導入した *S*,*S*-ビス(4-*t*-ブチルフェニル)スルホンジイミドを用い,上記と同様に TMS 化を行った後,フルオロ(ジフェニル)- λ^6 -スルファンニトリル(0.4 g, 0.2 mmol)を加え,アセトニトリル中,80°C,24 h 反応させた (Scheme 1)。

〇日大生産工(院) 坂上 訓康日大生産工 藤井 孝宜

2.2 [Pd(ndsdsd)₂]Cl₂ (1)の合成および, [Pd(ndsdsd)(phen)]Cl₂ (2)の合成

錯体 1 の合成は, ndsdsd・2H₂O (65 mg, 0.10 mmol) をメタノール (2.0 ml) に溶解させ, 同溶 媒 (5.0 ml) に溶解させた [PdCl₂(CH₃CN)₂] を滴 下し, 室温で 3 h 反応させた。溶媒濃縮後, メタ ノールで洗浄し, 再結晶 (メタノール/エーテル) による精製を行った。

錯体 2 の合成は、ndsdsd・2H₂O (65 mg, 0.1 mmol)をメタノール (2 ml) に溶解させ、合成し た [PdCl₂(phen)] (phen = 1,10-フェナントロリン、 38 mg, 0.1 mmol) を加えた後、24 h 還流させた。 溶媒濃縮後、メタノールで洗浄し、再結晶 (メタ ノール/エーテル)による精製を行った。

3. 結果と考察

3.1 ndsdsd 配位子の新規合成法と ndsdsd 配位子 への置換基導入の試み

Scheme 1

ndsdsd の新規合成法は, スルホジイミドを TMS 化し, 2 当量のフルオロスルホジイミドと 反応させることで, 70%の収率で得た。フェニル 基の *p*-位への *t*-Bu 基導入は, 現在検討中である が, 反応条件を検討することにより合成できる と考えている。

 錯体 1 の合成は, ndsdsd と 0.5 当量の [PdCl₂(CH₃CN)₂] をメタノール中,室温で反応さ せ、定量的に黄色の固体を得た。また、 錯体 2 の合成は, ndsdsd と [PdCl₂(phen)] をメタノール 還流条件下, 1:1で反応させることにより黄色 の固体を収率 95%で得た。

Luminescence of Pd(II) Complex with Disulfanenitrile Ligand and Introduction of Substituent into the Ligand

Michiyasu SAKAGAMI, Takayoshi FUJII

3.2 [Pd(ndsdsd)₂]Cl₂(1), [Pd(ndsdsd)(phen)]Cl₂(2) の分子構造

錯体1および錯体2の分子構造を単結晶X線
構造解析により明らかにした(Figure 1, 2)。

Figure 1. Crystal structure of **1** (H, C atoms (apart from the $C\alpha$ atoms of the phenyl rings), two chlorides, and two methanol have been omitted for clarity).

Figure 2. Crystal structure of **2** (H, C atoms (apart from the $C\alpha$ atoms of the phenyl rings), two chlorides, and two methanol have been omitted for clarity).

錯体1は半分子解で構造解析され,Pd周りの 構造は、平面四角形をとっていた。一方、錯体2 では、フェナントロリン骨格は平面性を成して いるが、Pd周りは捻じれた構造であった。また、 Pd-N 結合長をそれぞれ比較すると、錯体1およ び錯体2のフェナントロリン側の結合長は、 2.035Å(av.)であるのに対し、錯体2のndsdsd配 位子側の結合長は短く、2.005Å(av.)であること から、ndsdsd配位子が強く配位していることが わかった。また、ndsdsd配位子の末端S-N 結合 長は、1.484Å(av.)と自由配位子状態のS-N 結合 長1.457Åとほぼ同様であり、S-N 三重結合が保 たれていることが示唆された。

3.3 [Pd(ndsdsd)₂]Cl₂ (1) の発光挙動,および [Pd(ndsdsd)(phen)]Cl₂ (2) との比較

固体状態での錯体1の発光スペクトルを測 定したところ, 室温条件下において, 錯体1は 赤色の強い発光を示した。また, 固体状態, 液体 状態の状態変化に関係なく, 温度に依存し, 温 度が下がる程レッドシフトすることから, ダイ マーもしくはエキシマーによる発光であると 示唆された (Figure 3)。

Figure 3. (a) Emission spectra of **1** solid state (room temperature), $\lambda_{max} = 640$ nm; liquid state (77 K, frozen EtOH(4)-MeOH(1) matrix, M = 10⁻²), $\lambda_{max} = 670$ nm; solid state (77 K), $\lambda_{max} = 670$ nm; ($\lambda_{ex} = 400$ nm). (b) Effect on temperature of **1**.

一方, 錯体 2 の固体状態での発光は見られな かったことから, ndsdsd 配位子が 2 つ配位する ことで配位子場が強くなり, 錯体 1 は発光して いることが示唆された。

4. 結言

ndsdsd 配位子の新規合成法を確立し,反応条 件を検討することで,配位子への置換基導入も 可能であることが示唆された。また, [Pd(ndsdsd)₂]Cl₂ (1) および[Pd(ndsdsd)(phen)]Cl₂ (2) の合成に成功し,それらの分子構造を明らか にした。ndsdsd 配位子が2つ配位した錯体1で は発光が観測され,室温から低温になることで レッドシフトすることがわかり,ndsdsd 配位子 の利用価値が高まった。

5. 参考文献

1) A. Tsuboyama, H. Iwasaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, and K. Ueno, *J. Am. Chem. Soc.*, **125**, 12971 (2004).

2) T. Tsubomura, Y. Ito, S. Inoue, Y. Tanaka, K. Matsumoto, and T. Tsukuda, *Inorg. Chem.*, **47**, 481 (2008).

3) (a) T. Fujii, M. Kanno, M. Hirata, T. Fujimori, and T. Yoshimura, *Inorg. Chem.*, **44**, 8653 (2005).

(b) T. Fujii, M. Kanno, M. Hirata, T. Nakahodo, T. Wakahara, and T. Akasaka, *Inorg. Chem. Acta.*, **361**, 2540 (2008).