4-6

曲げ変形と軸変形を独立とする応力法による平面骨組の構造解析に関する研究

(その1. 線形座屈解析の定式化)

日大生産工 〇川島 晃 日大生産工(院)大田 圭祐 日大生産工 花井 重孝

1. はじめに

構造解析で用いられている変位法と応力法の 名称は扱う未知量によるもので、それぞれの利点 をいかして構造物の特性を分析する方法を混合 法(mixed method)と呼んでいる。本研究は、 応力と変形をその独立成分で表す古典的な構造 力学の拡張である応力法の利点を追及するもの である。応力法はフレームと板を結合する構造 (接触面応力場の近似解法)や変断面部材要素に 適しており、構造工学上の適用範囲が広い。解法 には次の三種がある。a)ガウスジョルダンの消 去法を用いて静定基本系と不静定力系に分離す る(初期の研究で用いられた)方法¹⁾。b)釣合 式と変形の適合条件式を結合することで通常の 正方行列の解法に置き換える方法²⁾。c)長方行 列で表される釣合式の解法に一般逆行列を用い て、系全体の特解と余解を求める方法³⁾。応力法 による線形座屈解析については、仮想荷重および 仮想変位の概念を用いて応力と外荷重の関係式 ならびに変位と外荷重の関係式を作成して、前述 a)を適用する方法がある⁴⁾。

本報では応力法に関する研究成果³⁾をもとに、 軸方向力と曲げ変形の連成(Pδ効果)および 軸方向力と部材回転の連成(PΔ効果)を個々に 扱える線形座屈解析の定式化を示す。

2. 座標と仮定

座標はすべて右手系に設定する。**図1**に示す (A),(B)は節点名で、(p)は部材名を表す。座標 x_1, x_2 は、ラーメンを構成するある平面を表す 全体座標で、そのベースベクトルをそれぞれ

図1座標

 $e_{1,e_{2}}$ としている。座標 x_{3} はラーメン面に垂直に 設けた座標で、 e_{3} はそのベースベクトルである。 座標 y^{1}, y^{2} は、ラーメン面にある部材 (p)の方向 を示す座標(局所座標)で、 \underline{y}^{3} は y^{1}, y^{2} 平面に 垂直な方向に向いている。座標 y^{1}, y^{2} に沿うベー スベクトルを $\mathbf{a}^{1}(p), \mathbf{a}^{2}(p)$ としたとき、 \underline{y}^{3} に沿う $\underline{a}^{3}(p)$ は回転を表すベースベクトルであり、

$$\mathbf{e}_3 = \underline{\mathbf{a}}^3_{(p)} \tag{1}$$

X(A), **X**(B)は全体座標の原点 0 に対する節点 (A),(B)の位置ベクトルである。**u**(A, p), **u**(B, p)はそ れぞれ部材(p)の材端(A),(B)の変位を表すベク トルである。部材(p)の材端記号A,BをNで表す と、局所座標における材端変位成分**u**^α(N, p)(α = 1,2)と全体座標における材端変位成分**u**_i(N, p)(i = 1 ,2)は、次の関係がある。

$$\mathbf{u}_{(N, p)}^{1} \mathbf{a}^{\alpha}_{(p)} = \mathbf{u}^{\alpha}_{(N, p)} (\alpha = 1, 2; N = A, B)$$
 (2-1)

$$\mathbf{a}^{\alpha}(\mathbf{p})\mathbf{u}^{\alpha}(\mathbf{N},\mathbf{p}) = \mathbf{u}(\mathbf{N},\mathbf{p}) \tag{2-2}$$

A Study on the Matrix Analysis of Plane Frames which makes Slope Deformation and axis deformation of member independent by the stress method

(Part1. Formulation of Linear Buckling Analysis)

Akira KAWASHIMA, Shigetaka HANAI and Keisuke OHTA

$$\mathbf{u}_{(N, p)} = \mathbf{u}_{i}(N, p) \quad (i = 1, 2; N = A, B)$$
 (3)

ここに、肩付添え字 T は転置を表す。 他のベクトルと成分の関係も同様である。 次に解析上の仮定について述べておく。

- 1) ここで取り扱う対象は直線材で構成された ラーメンで、部材はヤング係数 E をもつ。
- 2) 断面の重心は y^1 軸上にあり、断面の主軸は y^2, y^3 軸に一致している。
- 3)荷重は節点に作用するものとする。
- 4) 材端が剛節である場合のみを取り扱う。
- 5)曲げによる伸縮は考慮しない。

3. 構成式

図2は、部材 (p)の材端曲げモーメント m_(N, P) と材端せん断力 n²_(N, P) および軸方向力 n_(P) (引 張力を正)を表す。

1)軸方向力と曲げ変形の連成(P δ 効果)

材端の相対たわみ角 *て*(N, p) と独立応力 **m**(N, P) の関係は、断面主軸に関する断面二次モーメントを I(p) とすると弾性曲線式より次式が得られる。

$$\boldsymbol{\tau}^{(1)}(N,P) = \mathbf{H}^{(1)}(P)\boldsymbol{\sigma}^{(1)}(N,P)$$
(4)

上式において、

$$\boldsymbol{\tau}^{(1)}(\mathbf{N},\mathbf{P}) = \begin{bmatrix} \boldsymbol{\tau}_{(\mathbf{A},\mathbf{P})} \\ \boldsymbol{\tau}_{(\mathbf{B},\mathbf{P})} \end{bmatrix}$$
(5-1)

$$\boldsymbol{\sigma}^{(1)}(\mathbf{N},\mathbf{P}) = \begin{bmatrix} \mathbf{m}_{(\mathbf{A},\mathbf{P})} \\ \mathbf{m}_{(\mathbf{B},\mathbf{P})} \end{bmatrix}$$
(5-2)

である。柔性行列 \mathbf{H}^{1} (p)は、基本たわみ角を \mathbf{h} (p) とし、軸方向力 \mathbf{n} (P)がたわみ角に及ぼす影響を \mathbf{s}^{3} (p)とおくと、

$$\mathbf{H}^{(1)}(\mathbf{p}) = \begin{bmatrix} 2h(\mathbf{p}) - \frac{1}{45}\mathbf{s}^{3}(\mathbf{p}) & -h(\mathbf{p}) - \frac{1}{45}\mathbf{s}^{3}(\mathbf{p}) \\ -h(\mathbf{p}) - \frac{1}{45}\mathbf{s}^{3}(\mathbf{p}) & 2h(\mathbf{p}) - \frac{1}{45}\mathbf{s}^{3}(\mathbf{p}) \end{bmatrix}$$
(6)

$$h_{(p)} = \frac{\ell_{(p)}}{6EI_{(p)}} \quad , \quad s^{3}_{(p)} = n_{(p)} \frac{\ell_{(p)}^{3}}{(EI_{(p)})^{2}} \qquad (7-1, 2)$$

2) 軸方向力と部材回転の連成 (P Δ 効果)

部材回転による軸方向力 $n_{(P)}$ の方向変化を考 慮する。この連成は材軸に直交する y^2 方向の相 対変位を $\Delta \ell^2_{(P)}$ として、二次応力を $n^2_{(P)}$ すると、 次式で表せる。

$$\Delta \ell^{2}(\mathbf{p}) = \frac{\ell(\mathbf{p})}{n(\mathbf{p})} n^{2}(\mathbf{p}) \qquad (n(\mathbf{p}) \neq 0)$$
(8)

ここに、 $\mathbf{n}_{(P)}$ が零のときには連成が起こらない ($\mathbf{n}^{2}_{(p)}=0$)から、 \mathbf{y}^{2} 方向の相対変位 $\Delta \ell^{2}_{(p)}$ は 他部材との従属関係により生じることを表して いる。部材(\mathbf{p})の構成式(式(4)と式(8))はまと めて、次式で表す。

$$\boldsymbol{\tau}_{(N, P)} = \mathbf{H}_{(P)}\boldsymbol{\sigma}_{(N, P)}$$
(9)
上式において、

$$\boldsymbol{\tau}(\mathbf{N}, \mathbf{P}) = \left[\boldsymbol{\tau}(\mathbf{A}, \mathbf{P}), \boldsymbol{\tau}(\mathbf{B}, \mathbf{P}), \Delta \ell^2(\mathbf{P}), \Delta \ell(\mathbf{P})\right]^{\mathrm{T}}$$
(10-1)

$$\mathbf{\sigma}_{(N, P)} = [m_{(A, P)}, m_{(B, P)}, n^{2}_{(P)}, n_{(P)}]^{T}$$
(10-2)

である。柔性行列 H(p) は断面積を A(p) とおき、

$$S^{2}(p) = \frac{\ell(p)}{n(p)}$$
, $S(p) = \frac{\ell(p)}{EA(p)}$ (11)

の記号を使うと、

$$\mathbf{H}_{(p)} = \begin{bmatrix} 2h(p) - \frac{1}{45}s^{3}(p) & -h(p) - \frac{1}{45}s^{3}(p) & 0 & 0 \\ -h(p) - \frac{1}{45}s^{3}(p) & 2h(p) - \frac{1}{45}s^{3}(p) & 0 & 0 \\ 0 & 0 & s^{2}(p) & 0 \\ 0 & 0 & 0 & s(p) \end{bmatrix}$$

 $\cdots \cdots (12)$

式(12)は部材全体にわたってまとめると、

$$\boldsymbol{\tau} = \mathbf{H}\boldsymbol{\sigma} \tag{13}$$

ここに、**H**は部材の柔性行列**H**_(p)を対角項に 並べた行列である。

$$\boldsymbol{\tau} = \left[\boldsymbol{\tau}_{(N,1)}, \boldsymbol{\tau}_{(N,2)}, \cdots\right]^{\mathrm{T}}$$
(14)

$$\boldsymbol{\sigma} = \left[\boldsymbol{\sigma}_{(N,1)}, \boldsymbol{\sigma}_{(N,2)}, \cdots\right]^{\mathrm{T}}$$
(15)

4. 力の釣合式

𝔅(N, P) (式(10-2))の各成分を全体座標で表し
 𝑘(A, P), 𝑘(B, P), 𝑘(A, P), 𝑘(B, P) とする。系全体の釣合式は
 𝔅(𝔅)(𝔅)および式(2-2)を参照すると表1を得る。
 𝔅
 𝔅

$$\mathbf{b}^{2}(\mathbf{p}) = \frac{1}{\ell(\mathbf{p})} \mathbf{a}^{2}(\mathbf{p}) \tag{16}$$

表1 部材(p)の力学的関係(行列**B**_(p))

/	m(A, P)	m(B, P)	n²(P)	n(P)
т(А, Р)	1	0	0	0
т(в, P)	0	1	0	0
n (A, P)	b ² (p)	b ² (p)	- a ² (p)	- a ¹ (p)
n (B, P)	$-\mathbf{b}^{2}(\mathbf{p})$	$-\mathbf{b}^{2}(\mathbf{p})$	a ² (p)	a ¹ (p)

次の記号を用いる。

 $\mathbf{m}_{(\mathrm{N},\mathrm{P})} = \left[\mathbf{m}_{(\mathrm{A},\mathrm{P})}, \mathbf{m}_{(\mathrm{B},\mathrm{P})}, \mathbf{n}_{(\mathrm{A},\mathrm{P})}, \mathbf{n}_{(\mathrm{B},\mathrm{P})}\right]^{\mathrm{T}}$ (17)

表1は式(17)と式(10-2)の記号を使うと、次式 で表せる。

$$\mathbf{m}_{(\mathrm{N},\mathrm{P})} = \mathbf{B}_{(\mathrm{p})}\boldsymbol{\sigma}_{(\mathrm{N},\mathrm{P})} \tag{18}$$

次に、式(18)をラーメン全体にまとめる。

記号は部材と節点の接続関係を表す行列をQ、 材端応力 σ (式(15))を全体座標成分で表した $\mathbf{m}_{(N, P)(N = A, B)}$ が節点(N)に及ぼす力のモーメント および力をそれぞれ $\mathbf{m}_{(N)}$ 、 $\mathbf{n}_{(N)}$ とし、節点番号順 に並べる。

$$\mathbf{m} = [\mathbf{m}_{(1)}, \mathbf{n}_{(1)}, \mathbf{m}_{(2)}, \mathbf{n}_{(2)}, \dots]^{\mathrm{T}}$$
(19)

ラーメン全体の釣合式は次式で表せる。

$\mathbf{m} = \mathbf{Q} \mathbf{B} \boldsymbol{\sigma} \tag{20}$

上式において、**B**は**表1**の行列**B**_(p)を対角項に 並べた行列である。

5. 幾何学的関係式

部材 (p) の材端 (A),(B) の節点角を θ(A, p), θ(B, p) 及び節点変位ベクトルを u(A, p), u(B, p) としまとめ て**θ**_(N, p)で表すと、相対変位ベクトル**τ**_(N, P)(式 (10-1))との関係は、**表1**の行列**B**_(p)を用いて次 式で表わせる。

$$\boldsymbol{\tau}_{(N, P)} = \mathbf{B}_{(p)}{}^{\mathrm{T}}\boldsymbol{\theta}_{(N, P)}$$
(21)

ここに、

$$\boldsymbol{\theta}_{(\mathrm{N}, \mathrm{p})} = \begin{bmatrix} \boldsymbol{\theta}_{(\mathrm{A}, \mathrm{p})}, \boldsymbol{\theta}_{(\mathrm{B}, \mathrm{p})}, \boldsymbol{u}_{(\mathrm{A}, \mathrm{p})}, \boldsymbol{u}_{(\mathrm{B}, \mathrm{p})} \end{bmatrix}^{\mathrm{T}}$$
(22)

式(21)をラーメン全体にまとめる。節点(N)の 節点角をθ(N)、節点変位ベクトルをu(N)としてま とめてθで表すと、系全体の相対変位ベクトルτ (式(14))との関係は、接続行列Qを用いて次式 で表せる。

$$\boldsymbol{\tau} = (\boldsymbol{Q}\boldsymbol{B})^{\mathrm{T}}\boldsymbol{\theta}$$
(23)

ここに、

$$\boldsymbol{\theta} = [\boldsymbol{\theta}^{(1)}, \mathbf{u}^{(1)}, \boldsymbol{\theta}^{(2)}, \mathbf{u}^{(2)}, \cdots]^{\mathrm{T}}$$
(24)

6. 応力法における変形の適合条件

系全体の釣合式(式(20))の一般解は、

$$\mathbf{\Lambda} = \mathbf{Q}\mathbf{B} \tag{25}$$

とおくと、次式で表せる。

$$\boldsymbol{\sigma} = \boldsymbol{\Lambda}^+ \mathbf{m} + \mathbf{G}\boldsymbol{\beta} \tag{26}$$

上式右辺の第1項は特解で、 Λ^+ は釣合行列 Λ のムーア・ペンローズ一般逆行列である。第 2項は余解(自己釣合系の応力)で、Gは $(I - \Lambda^+\Lambda)$ の独立なr個(不静定次数)の列ベク トルで作る係数行列(Iは単位行列)である。 β は任意のベクトルである。

自己釣合(**m**=**0**)の応力系**G**を仮想力とする(補)仮想仕事の原理より変形の適合条件は

$$\mathbf{G}^{\mathrm{T}}\boldsymbol{\tau} = \mathbf{0} \tag{27}$$

となる。上式に構成式(式(13))と応力の一般解 (式(26))を代入する。

$$\mathbf{G}^{\mathrm{T}}\mathbf{H}\boldsymbol{\sigma} = \mathbf{G}^{\mathrm{T}}\mathbf{H}(\boldsymbol{\Lambda}^{+}\mathbf{m} + \mathbf{G}\boldsymbol{\beta}) = \mathbf{0} \quad (28)$$

上式よりβは次式で与えられる。

$$\mathbf{G}^{\mathrm{T}}\mathbf{H}\mathbf{G}\boldsymbol{\beta} = -\mathbf{G}^{\mathrm{T}}\mathbf{H}(\boldsymbol{\Lambda}^{+}\mathbf{m})$$
(29)

ここに、左辺の $\mathbf{G}^{\mathrm{T}}\mathbf{H}\mathbf{G}$ は対称行列である。

-23-

応力解の力学的意味を述べる。

 1) 一般逆行列に基づく応力の特解(Λ⁺m) は釣合の最適近似解(剛性に無関係)である。
 2) βは、剛性条件により応力の特解を再配分 するベクトルである。

3) したがって、行列 $\mathbf{G}^{\mathrm{T}}\mathbf{H}\mathbf{G}$ が特異のとき応 力 σ が定まらないので座屈したことになる。

7. 線形座屈解析の定式化

慣例にしたがい、荷重ベクトル**m**は定数λを 用いて次式で与える。

$$\mathbf{m} = \lambda \overline{\mathbf{m}} \tag{30}$$

ここに、 m は荷重の相対的な大きさである。

変形の適合条件式(式(29))の柔性行列**H**(部 材の式(12)を参照)は定数λおよび線形項と二次 応力の二成分に分ける。線形項の記号は下付き添 え字e、同様に Pδ成分を下付き添え字1、PΔ 成分を2で表す。

$$\mathbf{H}_{(p)}\mathbf{e} = \begin{bmatrix} 2\mathbf{h}_{(p)} & -\mathbf{h}_{(p)} & 0 & 0 \\ -\mathbf{h}_{(p)} & 2\mathbf{h}_{(p)} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & S(p) \end{bmatrix}$$
(31-1)

$$\mathbf{H}_{(p)1} = \begin{bmatrix} -\frac{1}{45}\overline{S}^{3}(p) & -\frac{1}{45}\overline{S}^{3}(p) & 0 & 0\\ -\frac{1}{45}\overline{S}^{3}(p) & -\frac{1}{45}\overline{S}^{3}(p) & 0 & 0\\ -\frac{1}{45}\overline{S}^{3}(p) & -\frac{1}{45}\overline{S}^{3}(p) & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(31-2)

式(31-2.3)において、

$$\overline{s}^{3}(p) = \overline{n}(p) \frac{\ell(p)^{3}}{(EI(p))^{2}}, \quad \overline{s}^{2}(p) = \frac{\ell(p)}{\overline{n}(p)} \quad (32-1, 2)$$

であり、**m**による軸方向力を**n**_(p)と書いてある。 式(31)の**H**_(p)e,**H**_(p)1,**H**_(p)2を系全体にまとめて **H**e,**H**1,**H**2の記号で表す。

式(29)左辺は He, H1, H2 と定数 λ を用いると、 式(33)で表せる。

$$\mathbf{G}^{\mathrm{T}}\mathbf{H}\mathbf{G}\boldsymbol{\beta} = \mathbf{G}^{\mathrm{T}}(\lambda^{2}\mathbf{H}_{1} + \lambda\mathbf{H}_{e} + \mathbf{H}_{2})\mathbf{G}\boldsymbol{\beta} \quad (33)$$

上式に次の記号を用いる。

$$\mathbf{G}^{\mathrm{T}}\mathbf{H}_{1}\mathbf{G} = \widetilde{\mathbf{H}}_{1} \tag{34-1}$$

$$\mathbf{G}^{\mathrm{T}}\mathbf{H}\mathbf{e}\mathbf{G} = \widetilde{\mathbf{H}}\mathbf{e} \tag{34-2}$$

$$\mathbf{G}^{\mathrm{T}}\mathbf{H}_{2}\mathbf{G} = \widetilde{\mathbf{H}}_{2} \tag{34-3}$$

式(29)から線形座屈方程式は式(34)を用いる と次式で表せる。

$$\lambda^{2}\widetilde{\mathbf{H}}_{1} + \lambda \widetilde{\mathbf{H}}_{e} + \widetilde{\mathbf{H}}_{2} \mathbf{\beta} = \mathbf{0}$$
(35)

線形項**Ĥe** (式(34-2))は非特異であるから、 式(35)は次式で表せる。

$$\left(\lambda^2 \mathbf{H}^{*}_{1} + \lambda \mathbf{I} + \mathbf{H}^{*}_{2}\right) \boldsymbol{\beta} = \mathbf{0}$$
(36)

ここに、

$$\mathbf{H}^{*}_{1} = \widetilde{\mathbf{H}} \mathbf{e}^{-1} \mathbf{H}_{1} \qquad (|\mathbf{H}^{*}_{1}| \neq \mathbf{0}) \quad (37-1)$$

$$\mathbf{H}^{*} 2 = \widetilde{\mathbf{H}} e^{-1} \mathbf{H} 2 \qquad (|\mathbf{H}^{*} 2| \neq \mathbf{0}) \quad (37-2)$$

である。次の記号を使う。

$$\mathbf{M}_0 = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{H}^* & \mathbf{I} \end{bmatrix}, \quad \mathbf{M}_1 = \begin{bmatrix} -\mathbf{I} & \mathbf{0} \\ \mathbf{0} & -\mathbf{H}^* & \mathbf{I} \end{bmatrix}$$

• • • (38-1, 2)

βはその任意性からγに置き換えると、式(36)は、

$$\mathbf{M}_0 \mathbf{\gamma} = \lambda \mathbf{M}_1 \mathbf{\gamma} \tag{39}$$

型の標準固有値問題に変換できる。

8. まとめ

以上、本報では応力法の利点である曲げ変形と 軸変形を独立とする線形座屈解析の組織的な解 法および構造分析に向けて、その定式を示した。

参考文献

- 1) J. ロビンソン著、川井忠彦、他5名共訳:技術者のための マトリックス構造解析法、培風館、1979.11
- Kaljevie, I., Patnaik, S.N. and Hopkins, D.A. (1996) : Development of Finite Elements for Two-Dimensional Structural Analysis Using the Integrated Force Method, Computers & Structures, Vol. 59, NO.4, pp. 691-706
- 3)川島 晃:変位法および応力法による立体骨組の構造解析 に関する研究、日本大学学位論文、2006.3
- 4) J. S. シェムニスキー著、山田嘉昭、川井忠彦共訳:マトリ ックス構造解析の基礎理論、培風館、1972.3