プレキャストピースを用いた増設耐震壁の構造実験

1. はじめに

既存建築物にRC耐震壁を増設する場合、従来 はあと施工アンカーを用いて増設壁と既存骨組 との一体性を確保するとともに、増設壁を現場 打ちコンクリートにより構築するのが一般的で ある。しかし、あと施工アンカーによる振動、 騒音、粉塵の発生や、コンクリート現場打設に おける打設用配管スペースの確保、休日や夜間 での補強工事が要求される場合でのコンクリー ト調達の困難さ等の課題があった。そこで、PCa ピースにより増設壁を構築し、既存骨組との接 合にエポキシ樹脂による接着接合を採用した増 設耐震壁工法の開発に着手した。本報では工法 概要および実大の約1/2縮尺とした1層1スパン 試験体による載荷実験の結果を報告する。

2. 工法概要

図1に工法概要、図2に構成要素および収まり を示す。本工法は予め高ナットを溶接した"外 周定着プレート"と称する鋼板を、エポキシ樹 脂により既存骨組の内側四周に接着するととも に、小型のPCaピースを相互にエポキシ樹脂で 接着しながら既存骨組の内側に組積して、増設 壁の後打ち部分となる梁下、柱際および壁中央 縦列部分に無収縮グラウトを圧入することによ り増設耐震壁を構築する。PCaピースは幅 300mm、高さ200mm、厚さ(壁厚)200~250mmの モジュールで、1ピース当たりの重量は約30kg である。また、各PCaピースには壁筋を挿入す るためのシース管が内蔵されるとともに、後打 ち部との境界面にコッターが設けられている。 壁筋は一端にネジを有する異形鉄筋を用い、外 周定着プレートとネジ接合し、他端は壁中央で 重ね継ぎ手するものとしている。シース管内に は壁筋配筋後、無収縮グラウトを圧入する。

3. 実験計画

表1に試験体一覧、図3に試験体形状および配

後打ち部(無収縮グラウト)

図2 構成要素・収まり

筋を示す。試験体は全4体で、外周骨組の形状寸 法および配筋は全試験体共通である。加力梁お よび基礎スタブは十分な剛性と耐力を有するよ う設計し、柱はせん断破壊型とした。RCWは一 体打ち壁試験体で、BLW1~3がPCaピースによ る増設壁試験体である。増設壁試験体では外周 定着プレートの幅(接着幅)を主な実験パラメー タとした。すなわち、RC耐震改修指針[1]によれ ば、増設壁で想定されるせん断破壊の形式は、 外周骨組と壁板とが一体となってせん断破壊す る場合と、柱のパンチングシア破壊を伴って接 着面がすべり破壊(あるいは接合部せん断破壊) する場合に大別することができる。本実験計画 では外周定着プレートの全幅が接着に有効と仮

Experiment on Reinforced Concrete Infilled Shear Walls with Precast Concrete Pieces Taku TABATA

安藤建設(株) 〇田畑 卓

定し、BLW1では外周定着プレートの幅寸法を 壁厚の2倍(=250mm)として一体せん断破壊と接 着面すべり破壊の耐力を拮抗させ、BLW2では 壁厚と同一幅(=125mm)、BLW3では200mmとし ながら、壁筋量を増やし確実に接着面すべり破 壊を生じるよう計画した。

載荷にあたっては試験体の基礎スタブを異形 PC鋼棒により反力床に固定した後、両側柱に一 定軸力($0.15\sigma_B \cdot A_c$)を加えた状態で、加力梁の左 右に等荷重の水平力を与えた。

4. 実験結果

4.1 破壊性状

図 4 に層せん断力(Q)-層間形角(R)関係、図 5 に最終ひび割れ状況例を示す。

一体打ち壁試験体の RCW は *R*=100rad.に向か う途中で引張り側柱主筋が降伏し、ほぼその直 後に壁全体を対角線状に横切るせん断ひび割れ が拡大し一気に耐力低下した。これに対し、増 設壁試験体はいずれも壁板のひび割れは軽微な ままで外周定着プレートと外周骨組との接着面 でのすべり変形が顕著となり、圧縮側柱のパン チング破壊を生じることで最大耐力に至った。 最大耐力以降はスリップ型の履歴ループを描く が、RCW のような急激な耐力低下はみられず、 比較的安定した挙動を示した。また、最終加力 時(*R*=1/67rad.)まで PCa ピース相互の目地に沿 うようなひび割れは観察されなかった。

4.2 せん断終局耐力の評価

増設壁のせん断終局耐力(Q_{su})は式(1)~式(5) より算定する。これらはRC耐震改修指針[1]に準 拠しているが、本工法では接着接合工法を採用 しているため、外周骨組と壁板との接合界面で の破壊を考慮したせん断耐力(Q_{su2})は、破壊面を 外周骨組と外周定着プレート間の接着面に想定 した場合(Q_{su2f})、および外周定着プレートと壁 板との接合面に想定した場合(Q_{su2w})の小さい方 の耐力で与えるものとした。各評価式では文献 [1]に対して、エポキシ樹脂の接着強度を式(7a) より評価する点、 Q_{su2w} に文献[2]による壁板の圧 縮ストラット負担分を考慮している点が異なる。 曲げ終局耐力(Q_{mu})は式(6)による。

$$Q_{su} = \min(Q_{su1}, Q_{su2}) \tag{1}$$

		表 1	試験体一	覧					
i	試験体	RCW	BLW2	BLW3					
	形状	b × D=300 × 300mm							
柱	主筋	12-D13 (USD685) pg=1.69%							
	帯筋	2-D6@200 (SD295A) pw=0.11%							
	形状	t×	nm						
	縦筋 [pw]	2-D6@67.5	1-D10@75	1-D10&	D13@75				
壁	(SD295A)	[0.76%]	[0.76%]	[1.0	06%]				
	横筋 [pw]	2-D6@90	1-D10@100	1-D13	3@100				
	(SD295A)	[0.57%]	[0.57%]	[1.0)2%]				
射 プレ-	ト 周定着 ート幅 (mm)	—	250	125	200				
	1400 1 500 1								
					610				
1		34	400						
図 3 試験体形状および配筋									
表2 鋼材の材料特性									

1番 Dil	体田笛祇	降伏強度	引張強度	破断伸び	
作生力リ	医用固剂	(N/mm^2)	(N/mm^2)	(%)	
D13 (USD685)	柱主筋(共通)	690	938	11.3	
D13 (SD295A)	壁筋(BLW1~3)	347	505	22.3	
D10 (SD295A)	壁筋(BLW1~3)	364	510	18.9	
D6 (SD295A)	壁筋(RCW)、帯筋	371	538	18.4	
ϕ 3.2 (SWM)	スパイラル筋	-	618	-	
PL (t=6 SS400)	外周定着プレート	312	471	36.5	

表3 コンクリートの材料特性

部位	圧縮強度	ヤング係数	割裂強度		
꼬기 여러	(N/mm^2)	(N/mm^2)	(N/mm^2)		
柱(共通)、壁(RCW)	33.2	2.63×10^{4}	2.63		
PCaピース(BLW1)	56.0	2.84×10^{4}	3.99		
PCaピース(BLW2)	57.6	2.91×10^{4}	3.89		
PCaピース(BLW3)	60.0	2.97×10^{4}	4.25		
加力梁	44.1	2.86×10^{4}	3.04		
スタブ	42.2	2.99×10^{4}	3.00		
シース内無収縮グラウト	65.8	-	2.01		
後打ち部無収縮グラウト	70.5	-	2.25		

表4 エポキシ樹脂の材料特性

使用箇所	製品名	圧縮強度	接着強度	引張強度						
		(N/mm ⁻)	(N/mm ⁻)	(N/mm⁻)						
外周定着PLの接着	CP300W	115.0	16.8	50.4						
PCaピース相互の接着	AC406TW	107.0	20.1	-						
外周定着PL周りのシール	S930W	84.1	-	-						
※接着強度は引張りせん断試験による										

$$Q_{su_1} = \left\{ \frac{0.053 p_{le}^{0.23} (18 + Fc_f)}{M/(Q \cdot \ell) + 0.12} + 0.85 \sqrt{p_{se} \cdot \sigma_{wy}} + 0.1 \sigma_{0e} \right\} \cdot b_e \cdot j_e$$
(2)

$$Q_{su2} = \min(Q_{su2f}, Q_{su2w}) \tag{3}$$

<u>-6</u>

図4 層せん断力-層関変形角関係

$$Q_{su2f} = Q_{jf} +_p Q_c + \alpha \cdot Q_{cu}$$

$$Q_{su2w} = Q_{jw} + \Delta Q_{wu} +_p Q_c + \alpha \cdot Q_{cu}$$

$$pQ_c : 引張側柱頭部のパンチングシア耐力[1]$$

$$Q_{cu} : 圧縮側柱の終局耐力[1]$$
(4)

$$Q_{jf}: エポキシ樹脂の接着耐力で次式による $Q_{jf} = 0.30 \sqrt{Fc_f} \cdot t_s \cdot \ell_{wo}$ (4a)
 $t_s: 外周定着プレートの全幅 $\ell_{wo}: 壁板の内法スパン長さ$$$$

Q_{iw}:壁筋のせん断強度で次式による

$$Q_{jw} = \tau_{au} \cdot t_w \cdot \ell_{wo} \tag{5a}$$

$$\tau_{au} = \min(0.7\sigma_{wy}', 0.4\sqrt{Fc_w \cdot E_{cw}}) \cdot p_w' \qquad (5b)$$

ΔQ_{wu}:壁板の圧縮ストラットによるせん断耐 力成分で次式による

$$\Delta Q_{wu} = \Delta q_{wu} \cdot Fc_{w} \cdot t_{w} \cdot \ell_{wo}$$
(5c)

$$p_{w}' \cdot \sigma_{wy}' / Fc_{w} < 0.1 \quad : \quad \Delta q_{wu} = 0.07 - 0.3 \ p_{w}' \cdot \sigma_{wy}' / Fc_{w}$$
$$p_{w}' \cdot \sigma_{w}' / Fc_{w} \ge 0.1 \quad : \quad \Delta q_{wu} = 0.04$$

Fc_w:壁板のコンクリート強度

$$p_{w}' \cdot \sigma_{wy}'$$
: 壁筋比と壁筋降伏強度の積
 $Q_{mu} = M_{wu}/H_{wo}$ (6)
 $M_{wu} = (a_{t} \cdot \sigma_{y} + 0.5N) \cdot \ell_{w}$ (6a)

Hwo: RC 増設壁の反曲点高さ

a_t, *σ_y*:引張側柱主筋の断面積および降伏強度 *N*:両側柱軸力の合計

図5 最終ひび割れ状況例

終局耐力式の妥当性を検証するため、本実験 結果のほか、鋼板(外周定着プレート)を介して 外周骨組と壁板とをエポキシ樹脂により接着接 合した既往の無開口増設壁の実験結果[2]~[6] を抽出した。表5および図6に検討に用いた試験 体の最大耐力実験値と本評価式による計算値の 対応を示す。

図6中央は実験値と Q_{su2} の対応である。ここで、 計算値 Q_{su2} は全11体中9体で接着面すべり破壊 (Q_{su2f})、2体で接合部せん断破壊(Q_{su2w})で決定し ている。いずれの試験体も安全側の評価となっ ており、特に Q_{su2f} の算定にあたっては、外周定 着プレートの全幅を接着に有効と仮定して計算 値を求めているが、外周定着プレート幅を変動 因子(壁厚の1.0~2.0倍)とした本実験結果に おいては、試験体相互の耐力差を適切に評価で きており、有効接着幅に関する評価の妥当性が 認められる。

図6左はQ_{sul}との対応である。本実験の試験 体は全て接着面すべり破壊により最大耐力に至 ったものの、BLW1では計算値の1.5倍以上の 耐力を有することが確認できる。BLW1は最終 破壊状況においても軽微なせん断ひび割れが数 本発生した程度であり、また、いずれの試験体

÷+		実験値		各要素のせん断耐力計算値				終局せん断耐力計算値				実験値/計算値						
又臥	試験体名	Qmax	破壊	Qjf	pQc	αQ_{cu}	Qjw	∆Qwu	Qsu1	Qsu2f	Qsu2w	Qsu	Qmu	Qmax	Qmax	Qmax	Qmax	Qmax
NO		(kN)	形式	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	Qsu1	Qsu2f	Qsu2w	Qsu2	Qsu
本	BLW1	1704	SL	908	555	138	380	577	1121	1600	1649	1121	2181	1.52	1.07	1.03	1.07	1.52
実	BLW2	1232	SL	454	555	138	648	498	1236	1147	1839	1147	2181	1.00	1.07	0.67	1.07	1.07
簸	BLW3	1564	SL	726	555	138	648	498	1236	1419	1839	1236	2181	1.27	1.10	0.85	1.10	1.27
[2]	FW-N-B	657	SL	237	259	83	123	279	570	579	743	570	916	1.15	1.13	0.88	1.13	1.15
[3]	A	657	SL	156	258	78	94	216	465	492	645	465	1193	1.41	1.34	1.02	1.34	1.41
[4]	MA	348	F	163	177	20	99	230	276	360	525	276	276	1.26	0.97	0.66	0.97	1.26
[-1]	SA	779	FS	165	250	77	99	235	353	493	662	353	1030	2.21	1.58	1.18	1.58	2.21
[5]	No.1	554	S	322	165	40	153	83	387	527	441	387	488	1.43	1.05	1.25	1.25	1.43
[0]	No.2	649	SL	322	165	40	153	83	387	527	441	387	488	1.68	1.23	1.47	1.47	1.68
[6]	LS	393	SL	91	107	63	100	104	347	261	374	261	985	1.13	1.50	1.05	1.50	1.50
[0]	LSH ^{*1}	531	S	91	107	63	100	104	347	261	374	261	985	1.53	2.03	1.42	2.03	2.03
[破壊]	形式] SL:	接着面	すべり破	按壊 S:	一体せん	ん断破壊	€ F:曲	げ破壊	FS:曲	げ降伏征	後の一体	せん断	破壊	*1 LSH	は接合	部にアン	カー筋	を併用
1.4	F ı			- -		1 1.4			т = = ти	<u>.</u>		- 1 1.4	Г З ^{- и}	ı	J			
	m u l		Q		ΪΔ	1	- M		T V	0		1	- M	1) 1		l I
1.2				- -	·, =	1.2 I	ax		τ = - ŧ	δ	1	- 1.2	ax	i				
1.0		i i =+-	 +			÷ + 10	a B		 +	Qsi	u2f ≻ Qsu2	2w 1.0	ğ	i			i	i
1.0			1/		į	. 1.0						1.0		-	i			ļ
0.8			/		·	1 0.8			+-0+			- 1 0.8				/¦		
		$ \sim \infty$			1	1	アンカーf	并用 ❤ 	\mathcal{O}			<u></u>	1		\sim	1		
0.6		₫¯∕₫	+	SL	.f (本実験) 0.6		\$ \$ \$	<i>★</i> + 		_f (本美) f	鬼/1 0.6		\$ \$ \$	V_{1}^{+}		Lf (本実) 」f	鋏)⊣
04		¥+-	+	_¦ o s∟	.f	0.4	<u> </u>	×	 ++	05	or FS	1 0.4		~ <u>~</u> /			or ES	
0.4	♦ S or FS 0.4						j		i	ΔF	0110	- Li						
0.2		+-	+	LΔF		0.2			+ +		ii-	- 0.2		</td <td></td> <td>+-</td> <td></td> <td></td>		+-		
				i Qs	u1/Qmu						∣ ∣ Qsu2/Qr	mu					Qsu/	Qmu
0.0				1 10	14					10 1	0 14	0.0		2 04	0.6 0.	0 1 0	10 1	1 1 6
	図6 終局耐力に関する実験値と計算値の対応																	

表5 本実験および既往実験の結果と計算結果詳細

も PCa ピースの目地に沿うようなひび割れは観 察されていない。従って、本評価式による一体 破壊せん断耐力は十分な余力を有するものと判 断される。

図6右は、同図左と中央に示した計算値の小 さい方の値、すなわち増設耐震壁のせん断終局 耐力との対応である。せん断終局耐力の計算値 は殆どが一体破壊せん断耐力(Q_{sul})で決定して おり、必ずしも実験報告による破壊形式と一致 していない。これらは一体破壊せん断耐力の計 算値が実験結果を過小評価するためと考える。

5. まとめ

本実験より以下の知見が得られた。

- 一体せん断破壊を生じた一体打ち試験体は、 最大耐力に達して急激に耐力が低下したが、 接着面すべり破壊を生じた増設壁試験体は、 最大耐力以降の耐力低下が比較的緩やかで 安定した挙動を示した。
- 2)最大耐力の実験値は、本報に示すせん断終局 耐力式により良好に評価できた。特に、接着 面すべり破壊時の終局耐力においては、外周

定着プレート幅の全幅を接着に有効として 評価することの妥当性が認められた。

参考文献

[1] 日本建築防災協会:既存鉄筋コンクリート造建物の 耐震改修設計指針・同解説、2001 [2] 日本建築総合試 験所 構造部:鉄筋コンクリート増設壁耐震補強設計・ 施工指針、2001 [3] 増田ほか:プレキャストブロック を組積して構築した耐震壁のせん断耐力性状に関する 研究、JCI年次論文報告集、Vol.25、No.2、pp1459-1464、 2003 [4] 杉本ほか: プレキャストブロックを組積して 構築した耐震壁の曲げ耐力性状に関する研究、JCI工年 次論文報告集、Vol.25、No.2、pp1465-1470、2003 [5] 毛 井ほか:ノンアンカー工法によるRC補強耐震壁の実験 的研究、AIJ大会学術講演梗概集、pp393-394、2000.9 [6] 栗田ほか:小型プレキャストブロックを用いた増設耐震 壁工法(その9)、AIJ大会学術講演梗概集、pp29-32、2008.9 [7] 服部ほか:接着接合による耐震補強壁の水平加力実 験(その2)、AIJ大会学術講演梗概集、C-2、pp447-448、 2007.8 [8] 毛井ほか: 接着接合された鉄骨ブレース補 強骨組の力学特性、AIJ構造系論文集、第539号、 pp103-109、2001.1 [9] 小宮ほか:鉄骨増設ブレース補 強用の接着接合部および間接接合部の終局耐力、JCI年 次論文報告集、Vol.22、No.3、pp1657-1662、2000 [10] 宮内ほか:エポキシ樹脂を用いた接着接合部の力学性状 に関する実験研究、JCI年次論文報告集、Vol.23、No.1、 pp967-972、2001 [11] 日本建築防災協会:既存鉄筋コ ンクリート造建物の耐震診断基準・同解説、2001