CFT 造建物の振動特性

安藤建設(株) 〇藤本利昭

1. はじめに

実構造物の固有周期ならびに減衰特性の調査 結果が, 文献 1), 2)にまとめられている。その中 で,制振建物についてはコンクリート充填鋼管 (CFT) 造と鉄骨(S)造の分類がされているものの, 一般建物については CFT 造の分類がなく, S 造の 分類の中に包含されているものと推察される。一 方で,近年事務所系の超高層建物の多くに CFT 造が採用されており, CFT 造の設計および解析に おいては、その振動特性がS造に近いことからS 造と同様の値(略算による固有周期 T=0.03H, H: 建物高さ, h=2%の初期剛性比例型減衰など)が 用いられる場合が多い。このように CFT 造建物 が増加する中,実際の CFT 造建物の固有周期な らびに減衰定数といった振動特性のデータを蓄 積・分析することは重要である。

そこで本報では、免震構造とした CFT 造建物 の常時微動測定結果と地震観測結果について報 告する。

2. 建物概要

図1に対象建物の基準階平面図と断面図を示す。 対象建物は、仙台市内に建つ地上 14 階、塔屋 1 階の建物高さが H=60.75m(軒高 59.55m)の超高層 建物であり,上部構造と基礎との間に免震装置を 設置している免震構造の事務所建物である。上部 構造は冷間成形角型鋼管を用いた CFT 柱+鉄骨 梁による純ラーメン構造である。建物の平面形状 は、約37m×19mの長方形で、立面形状もセット バックのない整形の建物である。基礎は直接基礎 で、GL-5.8mの砂礫層にべた基礎として支持され ており, 上部構造の荷重は免震装置およびマット スラブを介して支持地盤に伝達させている。

Vibration Characteristic of CFT Structural Building

Toshiaki FUJIMOTO

3. 微振動特性

3.1 常時微動測定概要

測定は,建物の竣工時に4台の圧電型加速度計 を用いて実施した。測定位置は、免震装置下部(基 礎耐圧版上),1階,7階,最上階(R階)の4フ ロアーにおいてほぼ平面の重心に近い位置で水 平 2 方向(X 方向:建物長辺方向, Y 方向:建物 短辺方向), 鉛直方向(Z方向)の3方向同時測定を 行った。なお計測は、データ間隔を 0.01 秒とし、 測定時間は1時間とした。

3.2 測定結果

(a) 固有周期

図2に最上階(R階)の測定結果から求めた水 平方向(X, Y)成分のフーリエスペクトルを示す。 また表1には設計で用いた1階床固定時の上部構 造の固有周期(積載荷重を考慮した場合と無視し た場合の2ケース)と図2のフーリエスペクトル から求めた建物の固有周期の測定値を示す。なお, 参考のため、躯体完成時(一部仕上げ工事中)に 測定した固有周期も併せて示している。竣工時で は, 躯体完成時に比べ固有周期が若干伸びている。 これは,設備機器や仕上げ材による重量の増加と 外壁のカーテンウォールや間仕切り壁等の二次 部材による剛性の上昇が影響しているものと考 えられる。また、設計時の1次固有周期は、積載 荷重を考慮した場合 X 方向 1.74 秒, Y 方向 2.09 秒に対して竣工時の常時微動測定値は, それぞれ 1.37, 1.60 秒と 21%~23%短く, 積載荷重を無視 した場合(X 方向 1.58 秒, Y 方向 1.90 秒)でも 測定値には近づくものの13%~16%短く、これは 建物の二次部材が微小振幅レベルの建物剛性に 影響したためと推測できる。

図3に軒高と1次固有周期との関係を文献2) ~4)に示された CFT 建物と比較して示す。本建物 は,S造建物の既往のデータの平均値(T₁=0.02H) や他の CFT 建物に比べ固有周期が若干長いが,S 造の略算値 (T₁=0.03H) に比べて小さい値である。

(b) 振動モード

図4に, 設計時のX, Y両方向のモード図(1~ 3次)に、振幅スペクトルと位相スペクトルを基に 求めた結果をプロットして示す。中間階での測定 点が7階のみであるため測定による全体のモード 系は確認できないが,ほぼ設計でのモード系に一 致することが推察され, 更に多点で測定を行えば 常時微動測定結果から振動系が確認できるもの と考えられる。

(c) 減衰定数

建物の減衰定数は、文献 1)を参考に RD 法によ り推定した。RD 波形は、1 時間の波形データを 用いて,各次のピーク周波数を中心としたバンド パスフィルターを掛けた常時微動波形を作成し て求めた。

図2 フーリエスペクトル (竣工時)

表1 建物固有周期一覧(単位:秒)								
方	向	計算値(1	階床固定)	測定値				
		積載あり	積載なし	躯体 完成時	竣工時*			
X 方向 (長辺)	1次	1.74	1.58	1.32	1.37 (1.17%)			
	2次	0.58	0.52	0.45	0.46 (1.43%)			
	3次	0.35	0.30	0.25	0.27 (1.85%)			
Y 方向 (短辺)	1次	2.09	1.90	1.55	1.60 (0.79%)			
	2次	0.70	0.63	0.52	0.52 (0.95%)			
	3次	0.41	0.35	0.29	0.30 (1.76%)			
* ()中の体は述言ウ料1								

* : ()内の値は減衰定数 h

-2-

RD 法により推定した本建物の減衰定数を表 1 に示す。1 次固有振動数における減衰は,X 方向 (長辺)が *h*=1.17%,Y 方向(長辺)が *h*=0.79% であり,時刻歴応答解析で一般に慣用されている 鉄骨造の減衰 *h*=2.0%に比べ小さい値であった。

軒高Hと1次減衰定数 h_1 との関係を図5,短・ 長辺両方向の1次減衰定数 h_{IS} , h_{IL} の関係を図6 にそれぞれ示す。図中にはS造建物の近似式²⁾を 実線で示している。本建物の1次減衰定数はS造 の平均値に比べ若干小さいが、ほぼ高さの等しい CFT 造と同等であった。

4. 地震時の応答

本建物が竣工した 2008 年 4 月から約 2 ヶ月経 過した 6 月 14 日に「平成 20 年 (2008 年) 岩手・ 宮城内陸地震」の地震が観測された。地震の概要 を表 2 に,観測結果の一覧を表 3 に示す。

この地震では、岩手県奥州市、宮城県栗原市に おいて震度6強が記録され、仙台市内においても 震度4~5強が観測されている。本建物での観測 結果では、地表ならびに建物基礎部(耐圧版上) の計測震度の換算値は4.3であり、気象庁震度階 は4と判定された。

観測記録は,表3に示すように地表では水平方 向で120galを越える加速度が記録されているが, 基礎部における最大加速度は100galを下回って おり,加速度が低減されていることが確認できる。

図7に建物の高さ方向の最大加速度分布と,加 速度記録から積分して求めた最大相対変位の分

布を示す。鉛直方向の加速度は、基礎部に対し最 上階で約3倍に増幅しているが、水平方向の加速 度は、基礎部に対して1階、7階では減少してお り、最上階でも基礎部と同等になっていることか ら、免震装置による応答低減効果が見て取れる。

夫 2	地震の概要
AX L	川辰の似女

発生日時	2008 年 6 月 14 日 8 時 43 分					
震源地	岩手県内陸南部					
震 央	北緯 39 度 01.7 分 東経 140 度 52.8 分					
震源深さ	8km					
マク゛ニチュート゛	M : 7.2					
震 度	震度 4(宮城県仙台市青葉区)					
最大震度	震度6強					

表 3	建物各部の観測結果
10	

	最大加	速度一覧	震度分布(換算値)※					
	Х	Y	Z	気象庁	計測			
	(長辺)	(短辺)	(鉛直)	震度階	震度			
R 階	76.4	96.2	107.0	5弱	4.7			
7 階	47.6	74.2	70.6	4	4.4			
1 階	52.7	80.9	45.1	4	4.3			
耐圧版	73.7	96.6	38.9	4	4.3			
地表	128.7	123.2	66.4	4	4.3			

※:気象庁の方法により換算した値

一方相対変位の分布を見ると,免震層の最大変 位は約1cmであり、この値は免震層に設置したけ がき板の記録と一致していた。また上部構造の相 対変位は 3~4cm 程度であり、変形角は約 1/2000 ~1/1500程度に収まっていることが確認された。

観測記録のフーリエスペクトルから建物の卓 越周期を求めたところ,免震装置を含めた建物全 体の固有周期は 1.725 秒 (X 方向), 1.962 秒 (Y 方向),上部構造のみの固有周期は1.591秒(X方 向), 1.791 秒 (Y 方向) であり, 常時微動測定結 果(表1参照)に比べ周期が伸びていることが確 認できた。

5. 建物の固有周期の経年変化

建物完成後の固有周期の変化を調べるため, 設 置した地震計を用いて常時微動測定を行った。常 時微動により求めた固有周期を表1に示した建物 の固有周期の計算値と躯体完成時ならびに竣工 時の固有周期,2008年6月14日の岩手・宮城内 陸地震時の固有周期と併せて表4に示す。

表4の2008年5月9日の測定値は、建物完成 後,ほぼ居住者が入居し積載荷重が載った状態の 固有周期と考えられ、2009年9月29日の測定結 果は、岩手・宮城内陸地震を含む地震(図8参照) を経験した後の固有周期と考えられる。同表から 固有周期が僅かながら長周期化していることが わかる。ただし、これらの値に比べ、岩手・宮城 内陸地震時の固有周期が最も長く,加速度レベル により固有周期が異なるものと考えられる。

6. まとめ

実際の CFT 造建物を対象に,常時微動観測と 地震観測結果について報告した。測定結果から, 振動のレベルにより, 観測される固有周期や減衰 定数が変化することが確認でき、今後は、 地震観 測データを活用し、二次部材の影響等を含めて、 検討を行う予定である。

参考文献

- 1)日本建築学会:建築物の減衰,2000
- 2)日本建築学会:シンポジウム 建築物の減衰性能評 価手法の高度化と耐震・耐風設計,2007.11
- 3)田村幸雄,他:15 階建て CFT 柱オフィスビルの動特 性の推定 その1 常時微動と FDD 法による動特性 の同定, 2002年, B-2分冊, p.979
- 4)内山晴夫,他:神奈川大学23号館(免震棟)および 新1号館の振動実験 ―その4.新1号館の振動実験 結果, 2001年, B-2分冊, p.81

四月同期一見											
方向		計算	筸値	常時微動測定値						地震時	
		(1 階床固定)		躯体完成	竣工時	2008/5/9		2009/9/29		2008/6/14	
		積載あり	積載なし	上部構造	上部構造	上部構造	免震含む	上部構造	免震含む	上部構造	免震含む
X方向	1次	1.74	1.58	1.32	1.37	1.43	1.51	1.49	1.45	1.59	1.73
(長辺)	2次	0.58	0.52	0.45	0.46	0.47	0.50	0.50	0.50	-	-
Y方向	1次	2.09	1.90	1.55	1.60	1.59	1.65	1.64	1.59	1.79	1.96
(短辺)	2次	0.47	0.63	0.52	0.52	0.54	0.56	0.57	0.57	-	-