降雨後の影響下におけるパッシブサーモグラフィ法によるコンクリート診断

1. はじめに

日射量及び外気温の変動を利用したパッシ ブサーモグラフィ法は、加熱機器を利用する アクティブ法に比べて検査の効率性も高く、 広範囲に均一な熱量が供給されることから大 規模な構造物の診断に適している。しかし、 供給される太陽エネルギーは全日快晴ばかり ではなく曇り、雨の繰り返しで、特に降雨後 にはコンクリートへの吸水が温度上昇変化に 影響を及ぼすことが予測される。

そこで、本研究では、先ず降雨後の気象条 件が及ぼす健全部コンクリートの温度上昇変 化について、横浜市港北区役所の屋上で実測 された温度データを分析し積算日射量の相違 から明らかにした。また、欠陥部の温度上昇 変化については、水中浸漬して飽和状態にし た試験体、乾燥炉で乾燥した試験体から検討 した。さらに、熱伝導解析では計測されたコ ンクリート温度との比較を行い、降雨後の温 度変化の再現性について検討した。

2. 日射量とコンクリートの温度上昇変化

日射量とコンクリート温度のデータは横浜 市港北区役所から提供された2006年8月と2007 年10月である。区役所屋上ではヒートアイラ ンド現象の緩和や省エネ対策に繋がる事業と して緑化内部温度及びコンクリート表面温度 (水平面)が1分間隔で計測されている。

2.1 積算日射量と温度上昇との関係

(1) 2006年8月の温度上昇

図-1は2006年8月1日から31日まで計測され たコンクリート表面の最大温度上昇とその最 大温度上昇までの積算日射量との関係である。 なお、この最大温度上昇は最大温度から日の 出時刻の温度を減算したものである。図-2に は両者の相関関係を示す。

その結果、17日、31日、14日及び10日は同 積算日射量と比較すると5℃以上も大きい特異 な温度上昇を示している。これらの気象条件 は、前日あるいは前々日が雨天となっている。 表-1に降雨時間帯と降雨時間及び合計降雨量

中央工学校 〇金光寿一 日大生産工 柳内睦人

図-1 積算日射量と温度上昇(2006.8)

図-2 積算日射量と温度上昇との相関 表-1 降雨時間と降雨量

雨日	時刻		合計雨量		
	始め	終わり	(分)	(mm)	
8	4:50	12:00	186	13.5	
9	0:14	23:00	660	102.5	
12	13:36	16:00	144	20.0	
15	9:13	10:00	47	1.0	
16	6:52	0:00	152	14.0	
17	0:53	8:00	103	18.5	
18	0:29	2:00	62	4.5	
23	10:47	11:00	13	1.5	
25	7:45	23:00	190	11.5	
26	0:46	1:00	14	4.5	
30	15:41	16:00	19	0.5	

を示す。特に、9日は102.5mm/日の大雨で、翌 日の10日は積算日射量が少ない割には最も温 度上昇量が大きくなっており、日射波形に乱 れがなければ更なる温度上昇が期待できる(図 -3,図-4参照)。また、17日は8:00まで雨であ るが、気化熱の影響も見受けられず急激な温

Concrete Diagnosis by the Passive Thermography Method under the Environment after Rainfall Juichi KANAMITSU, Mutsuhito YANAI

— 149 —

図-5 降雨後の日射量とBouguer式の比較

度上昇を示し僅か1,838W/m²・hで17.7℃上昇 している。ここに、降雨後の影響を受けると 思われる日は表-1に示すとおり、降雨の翌日 となる10、13、17、18、24、27及び31日であ るが、積算日射量に対して特異な温度上昇日 となったのは、10、14、17及び31日である。 13日は積算日射量が3,159W/m²・hで18.5℃の 上昇、18日は4,051 W/m²・hで18.1℃の上昇、 24日は1,946 W/m²・hで13.0℃の上昇、27日は 1,069 W/m²・hで10.4℃の上昇となっており、 特に18日は図-2に示す平均値を下回っている。 4,051W/m²・hでは、図-2の回帰式から21.7℃ 程度になるはずであるが18.1℃の温度上昇に 止まっている。この温度上昇変化に影響する 因子としては、日射量の他に風速、湿度、外 気温及び蒸発潜熱が考えられる。18日は時刻2 :00まで雨が降っており、日の出時刻までの時 間は186分間である。湿度は日の出時で91%、 日の入り時が73%で8月の平均値とほぼ同様で ある。しかし、風速が最大で15m/s、日の出時

図-7 積算日射量と温度上昇(2007.10)

図-8	積算日射量と温度上昇との関係	ł
	表-2 降雨時間と降雨量(2006.8	3)

	時刻		合計雨量		
I	始め	終わり	(分)	(mm)	
1	0:30	23:10	65	6.5	
2	10:00	10:55	55	2.5	
5	20:10	20:55	45	1.5	
8	10:00	12:45	10	1.5	
9	8:50	13:05	35	2.5	
10	4:10	4:15	5	0.5	
12	20:10	20:15	5	0.5	
19	19:40	23:30	125	19.5	
20	0:15	0:20	5	0.5	
26	6:05	21:20	110	25	
27	0:40	21:30	910	106.5	
30	23:20	23:50	30	2.5	
31	0:05	0:15	10	1.5	

から日の入り時までの平均風速も6m/sを超え ており8月で最も強い風を受けている。18日は この強風条件によって蒸発潜熱及び大気への 熱拡散が増加したものと考える。一方、降雨 が健全部の温度上昇に影響を与えるならば、 12日は144分間20mmの降雨量があり、特異な温 度上昇は14日ではなく降雨後の13日になる。 図-5に実測の積算日射量とBouguer式で最大日 射量を一致させて算出した積算日射量との割 合(日射変動)を示す。この13日の積算日射量 は1,898W/m²・h、温度上昇は17.0℃、日射変 動の割合は0.77で、14日はそれぞれ2,315W/m²・h、18.4℃、0.75である。降雨後に特異な温 度上昇を示した10日、14日、17日、31日と共 通している気象条件は、時刻8:00まで降って

図-9 日射波形の比較

いた17日を除くと、積算日射量は2,000W/m²・ h以上で、日射変動の割合では0.75以上となっ ている。

(2) 2007年10月の温度上昇

次に図-7は季節別の温度上昇を比較した 2007年10月1日から31日までの温度上昇と最大 温度までの積算日射量との関係である。また、 図-8には両者の相関関係を示す。表-2には降 雨時間と降雨量を示す。

その結果、図-2の8月と比較すると温度上昇 は積算日射量との相関が強くなっている。最 も温度上昇が大きくなった21日も降雨後では あるが雨量は少なく、最大風速は10m/sを超え ており積算日射量とほぼ比例関係にある。一 方、28日は27日の大雨により同積算日射量と 比べると2℃程度は温度上昇が大きくなってい る。28日の最大温度までの積算日射量は図-7 に示す通り2,341W/m²・hで日の出時からの温 度上昇は22.1℃である。しかし、日射波形の 乱れを実測の積算日射量と Bouguer式で算出 した積算日射量と比較すると(最大温度となっ た13:10まで)、0.82であり(図-9参照)、乱れ がなければ22.1℃以上の上昇量が得られたも のと思われる。なお、降雨後の6日については 積算日射量は最大温度となった時刻14:00まで 2,541W/m²・hであるが、Bouguer式で算出した 積算日射量との割合は0.53であり、16.6℃の 上昇量に止まっている。

このような降雨が影響するコンクリート表 面の温度上昇変化の理由は、表面が濡れてい る方がコンクリート表面の濃淡が乾燥時の灰 色よりも濃く日射吸収率が大きくなること、 また表面部に水分を含んでいる方が乾燥して いる場合よりも反射率が小さくなり吸熱量が 増加したことが要因と思われる。

3. 屋外実験と熱伝導解析による再現性

本実験ではコンクリート中の水分状態が欠 陥検出にどのように影響を及ぼすのかを明ら

		表-3	試験体一	覧	
試験体 記号		試験体	欠陥		実験条
		寸法(mm)	大きさ(mm)	彩 (mm)	件
	N1				乾燥
Ν	N2	200×200×100	なし		浸漬
	N3			気中	
	K1		2	20	浸漬
к K2 K3	300×300×210	100×100×5 (空洞)	40	浸漬	
	K3			40	乾燥

かにするために、絶乾・水中浸漬・気中試験 体の3パターンから健全部及び欠陥部の温度上 昇変化の違いについて検討した。また、二次 元非定常熱伝導解析ではコンクリートの熱特 性を変化させて実験値の温度変化との比較を 行い再現性について検討した。実験に供した 試験体一覧及び実験条件を表−3に示す。コン クリートの配合は、呼び強度40N/mm²、W/C=45 %、空気量は4.5%である。降雨を模擬したコ ンクリートへの吸水は打設後28日間水中養生 し、その後28日間の気中養生後に1日間水中浸 漬し、ポリエステルシートで密封して試験日 まで3日間放置したもの(浸漬と表示)、3日間 110℃の乾燥炉で乾燥した後、同様にポリエス テルシートで密封したもの(乾燥と表示)、ま た、28日間の水中養生後、さらに実験日まで 実験室内に放置したものである(気中と表示)。

赤外線カメラによる温度測定は、8月7日、8 日の2日間の時刻7:00から17:00まで20分間隔 で熱画像の撮り込みを行った。図-11には測定

写真-1 熱画像(8月7日, 8日)

図-12 解析モデル(図-10参照)

図-13 健全部 (N試験体)の温度上昇

図-14 欠陥部(K試験体)の温度差分布

された日射量と外気温を示す。平均風速は7日 が2.7 m/s、8日が2.0m/sであった。

3.1 含水率の経時変化

含水率の測定はコンクリート接触型水分計 [(HI-520):高周波容量式]にて行った。その 結果、水中浸漬したN2試験体と気中養生した N3試験体の時刻7:00の含水率は5.8%と5.0% で僅かな差であった。一方、欠陥部で測定し た各K試験体の欠陥深さまでの含水率は、欠陥 深さ20mmであるK1が6.2%で深さ40mmのK2は4. 6%である。その日射受熱による水分蒸発量の 経時変化は、時刻7:00から17:00まで積算日射 量6,851W/m²・hを受けているが極僅か1%程度 の減少となっている。また、8日の含水率変化 は7日とほぼ同様の天候であるが、その減少は 見られなかった。

3.2 赤外線カメラによる温度測定

写真-1に7日及び8日の時刻13:00に得られた K試験体の熱画像を示す。両日ともに各欠陥位 置には欠陥深さに対応した高温域を確認する ことができるが、特に欠陥深さ40mmであるK2 (浸漬)及びK3試験体(乾燥)は7日の方が鮮明 で、8日のK3については視覚的に欠陥を確認す ることは困難である。

3.3 温度上昇と熱伝導解析による再現性

二次元非定常熱伝導解析は、汎用FEMプログ ラムCOSMOS/M を使用した。図-12に解析モデ ルを表-4に解析に用いた熱特性を示す。その 熱特性は、絶乾を想定した最小値から高含水 率を想定した最大値までの5ケースを比例関係 に設定して深さ40mmまでを一定変化させシミ ュレートした。また、熱伝達係数は14W/(m²・ K)の一定値としている。図-13は健全部温度を 比較したものである。熱パラメータ(cρλ)が 大きくなるほど健全部の表面温度は低下する ことになり、再現性には表面の乾湿状態に対 応させて吸熱日射量を大きくする必要がある。 図-14はK2, K3試験体及びケース1とケース5と の試験体中央の温度差分布変化(8月7日13:00) である。熱拡散率が大きくなるほど欠陥部温 度が大きくなり、含水率が高いほど欠陥検出 に有効であることが分かる。

4.まとめ

本研究で得られた所見を以下に示す。

- (1) 港北区役所屋上で測定されたコンクリートの温度上昇量は、降雨後に晴天の場合が最も大きくなっており、その有効性については屋外実験からも確認できた。
- (2) 屋外実験では、温度上昇差は浸漬試験体 の方が大きくなり、降雨後の診断が特に 欠陥検出に有効であることが分かった。
- (3) 熱伝導解析による再現性では、含水率の 相違による健全部の温度上昇は日射吸収 率に影響し、欠陥部は熱拡散率が大きく なるほど欠陥検出に有効であることが明 らかとなった。