下水道施設におけるコンクリートの劣化層推定に関する研究

日大生産工(院)

○亀田 瞬 日大生産工 保坂 成司

1. はじめに

下水道施設とは、汚水や雨水を下水道で収 集し処理場で浄化したのち、公共用水域へ放 流する施設であり、衛生的な日常生活を送る 上で必要不可欠な施設である。

平成 21 年度末における日本全国の下水道 の普及率は 72.7%であり、東京 23 区では 99.9%、横浜市は 99.8%、大阪市はほぼ 100% などとなっており、日本の主要都市における 下水道の整備はほぼ終了している。

下水道は自然流下方式で道路の下地中深く に埋設されていることが多く、このため長期 耐久性を有するコンクリートなどを材料とし た下水道管が広く採用されている。しかし、 近年コンクリート下水道管の早期老朽化が問 題となっており、この老朽化による陥没事故 が東京都で年間約1400件も報告されている。

この早期老朽化の原因は近年の調査で微生 物が生成する硫酸によるコンクリート腐食で あることがわかっており、最悪の場合十数年 で機能しなくなる報告もある。

東京都ではこの早期老朽化の対策として補 修、再構築の箇所を抽出すべく頻繁に調査を 行っている。この調査において管径 800mm 以下の下水道では管内調査カメラの映像によ る目視調査であるため内部評価など構造物の 健全性に関わる調査を行えないのが実状であ る。

本研究では供用中である構造物に損傷を与 えることなく内部調査が行える非破壊検査の 一つである超音波法を用い、腐食による劣化 層の推定が可能であるか検討を行った。

2. 超音波法について

超音波法は人間が聞き取ることの出来ない 音域の音波を用いて、調査対象物内部の様子 を調査する試験方法であり、調査対象物を傷 つけることなく破損や欠陥を調べることがで きる試験法である。

この超音波を用いた測定法には反射法や透 過法、表面走査法などがある。反射法は一つ のトランスデューサーで送受信を行うため、 内部空洞などの欠陥を調査する方法に向いて いるが、物質表面の劣化層などの調査には向 いていない。よって、本研究では送受信のト ランスデューサーを別々に用いた二探法であ る透過法と表面走査法による研究を行った。 a) 透過法

透過法とは、試験体の片面に送信用トラン スデューサーを、対応する面に受信用トラン スデューサーをそれぞれ設置し、超音波の送 信・受信を行い伝播時間の測定する方法であ る。この透過法は伝播時間から密度などの測 定が可能であり測定精度も高いが、トランス デューサーで構造物を挟み込まなければなら ないため、下水道管の様に片側から調査を行 う場合には適用が困難である(図-1.a)。

b) 表面走查法

表面走査法とは、同一表面上に送信及び受 信のトランスデューサーを設置し、超音波の 送信・受信を行い、伝播時間を測定する方法 である。この試験方法は超音波が伝播する経 路が複数考えられることや、指向性の低い超 音波であると超音波が分散し計測が難しくな るなどの欠点もあるが、供試体の片面のみで 測定ができるため、供用中であるコンクリー ト管での測定も可能である。(図-1.b)

図-1 透過法および表面走査法の概略図

3. 実験方法

3-1 試験体について

微生物による腐食を受けたコンクリートの 主成分は二水石膏であることが分析によりわ かっている。このことから本研究では、コン クリート平板を用いて表面に劣化層に見立て た石膏層を作成したものを試験体とし実験を 行った。試験体の大きさについては、過去の 実験より狭小な試験体では内部反射の影響に より解析が困難であったことから、内部反射 の影響が少ない 300mm×300mm×50mm のコンクリート平板の表面に 5mm,10m m,15mm,20mmの厚さで石膏層を作成した (図-2)。

なお、石膏は水溶性が高く下水道と同じ環 境下である水中で実験を行うと、短期間で石 膏が溶解・剥離してしまうため、石膏に水溶 性アクリルペイントを約 6%混和させ耐水性 を向上させた。

3-2 実験装置について

本研究で用いた超音波の実験装置は「パル サーレシーバー」「トランスデューサー」「オ シロスコープ」で構成されている(図-3)。

パルサーレシーバーは超音波を励起させる ための電気パルスを発生させる装置である。

トランスデューサーはパルサーレシーバー から受け取った電気パルスを超音波へ、また その逆の相互変換を行う装置である。

オシロスコープは電気信号を波形として表 す装置であり、受信波形の分析・解析に使用 した。

図-2 供試体の平面図及び断面図

図-3 測定装置図

3-3 測定条件

通常、気中における測定ではトランスデュ ーサーと試験体を密着させるためにカップラ ントとしてグリセリンを使用している。しか し本研究では供用中の下水道管における測定 を目的としていることから、水中に試験体を 静置し測定を行った。この水中における測定 では、水がカップラントの役割を果たすため グリセリンは不要となる。また超音波は温度 の影響を受けるため室温を 25℃に保った実 験室内で測定を行い、実験で使用する水は水 槽に汲み置きし水温を一定にしたものを使用 した。

3-4 計算方法について

超音波発生装置によって物質に超音波を伝 播させた場合、超音波が物質を通過するまで に要する時間は次の式で表される。

V…伝播速度(m/s)

今回使用する試験体はコンクリートと石膏の 複合体であり、コンクリートと石膏では密度 が違うため、超音波の伝播速度に違いが生ず る。よって今回の伝播時間の計算は次の式を 用いた。

$$T = \frac{L_G}{V_G} + \frac{L_C}{V_C} \quad \cdot \quad \cdot \quad \textcircled{2}$$

L_G…石膏における伝播距離(m) L_c…コンクリートにおける伝播距離(m) V_G…石膏における伝播速度(m/s) V_c…コンクリートにおける伝播速度(m/s) T…伝播時間(s)

3-5 伝播速度の測定

今回の研究の目的はコンクリート表面の劣 化層の推定である。劣化層の厚さが未知であ るとき、先に示した②式より劣化層の厚さを 求めるためにはコンクリートと石膏の伝播速 度をあらかじめ測定する必要がある。よって、 1MHzの周波数のトランスデューサーを用い 透過法により測定を行った結果、コンクリー ト伝播速度は4098m/s≒4100 m/s、石膏伝播 速度は1923m/s≒1900 m/s であった。

3-6 表面走査法によるコンクリート伝播経路の推定

過去の実験で、超音波が供試体を伝播する 経路として石膏を透過したのち、コンクリー ト表面を伝播する経路が有力であることがわ かっている。この伝播経路の模式図を図-4 に示す。

しかし、図では伝播経路を、超音波の送受 信がトランスデューサーの中心から中心に伝 播している様に示したが、実際トランスデュ ーサーの直径は 1MHz で 30mm (100kHz で は 50mm) あるためトランスデューサーのど の位置から超音波の送受信が行われているか 不明であり、石膏厚を推定するためには正確 なコンクリートの伝播経路を求める必要があ る。

よって、実測伝播時間より式②を用いて既 値である石膏伝播距離、石膏伝播速度、コン クリート伝播速度、伝播時間を用いてコンク リート伝播距離の計算を行った結果を次の表 -1に示す。また、グラフの横軸にトランス デューサー中心間隔、縦軸にコンクリート伝 播距離の平均を表したものが図-5である。

表一1 コンクリート伝播距離の計測結果

右 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	トランステューサー中心間隔	100mm	110mm	120mm	130mm	140mm	150mm	160mm
5mm	実測伝播時間(μs)	25	27	30	33	35	37	39
	コンクリート伝播距離(mm)	80.1	89.9	102.2	112.9	121.1	130.1	138.3
10mm	実測伝播時間(μs)	35	37	39	42	44	46	48
	コンクリート伝播距離(mm)	98.7	107.7	117.6	127.4	136.4	146.3	153.6
15mm	実測伝播時間(μs)	35	38	42	44	46	49	51
	コンクリート伝播距離(mm)	80.4	90.2	108.3	117.3	125.5	135.3	144.4
20mm	実測伝播時間(μs)	40	41	45	48	50	52	55
	コンクリート伝播距離(mm)	76.0	83.4	97.4	109.7	117.9	127.7	137.5
コンク	リート伝播距離平均(mm)	83.8	92.8	106.4	116.8	125.2	134.9	143.5

図-5 トランスデューサー間隔と コンクリート伝播距離

ここで、グラフよりトランスデューサーの 中心間隔が広くなると伝播距離も長くなり、 一次的な変化が生じることがわかった。 この近似直線式を表すと次の通りとなる。

L'_c = 1.0067x - 16.103 ・・・③ L'_c:推定コンクリート伝播距離(mm) x:トランスデューサー中心間隔(mm)

この式の傾きはほぼ1でありトランスデュ ーサー間隔と推定コンクリート伝播距離の変 化量とほぼ一致する。切片はトランスデュー サー間隔と推定コンクリート伝播距離との誤 差であり、この誤差がトランスデューサーに おける超音波の送信・受信の位置の違いであ ると考えられる。

次にここで求めた式③を式①の Lc に代入 すると石膏厚予測式は次の式となる。

$$L_{G} = \frac{\left(T \times V_{C} - L_{C}^{'}\right)V_{G}}{V_{C}} \cdot \cdot \cdot (4)$$

ここで表面走査法による測定値を推定式に 代入し検証を行った。この検証結果を表-2 に示す。

④式を用いた推定石膏厚は表-2の右から
2列目に示す値であり、石膏層の作成誤差を
考慮しても誤差は僅かであり推定は可能であると言える。

表-2 石膏厚の推定結果

実石膏厚	伝播時間	推定石膏厚	誤差		
(mm)	(µs)	(mm)	(mm)		
5	39.0	4	-1		
10	48.0	12	2		
15	51.0	15	±0		
20	54.6	19	-1		

3-7 トランスデューサー周波数の違いによ る石膏厚の推定

続いてトランスデューサーの周波数を 50 k Hz,100 k Hz,500 k Hz の場合も推測が可能 であるか検討を行った。この検討の結果を図 - 7 a)~c)に示す。

グラフより各トランスデューサーと推定コ ンクリート伝播距離の関係を示す式は次の通 りである。

50 k Hz : y = 0.9709x + 4.1026100 k Hz : y = 1.0066x + 13.923

500 k Hz : y = 1.0184x + 20.639

トランスデューサーの周波数の違いにより 傾きに違いは現れなかったが、切片に違いが 現れた。この切片の違いは現在のところトラ ンスデューサーの直径がトランスデューサー の周波数により異なること、また低周波にな るほど波長が長くなるため、波の打ち消しな どの現象が生じた可能性もある。

5. まとめ

超音波法を用いた表面走査法によりコンク リート表面に作成した石膏層の厚さの推定を 行った結果、以下の式で表わされた。

この式よりコンクリート伝播速度と石膏伝播 速度と超音波伝播時間の3つが測定可能であ れば石膏厚の推定が可能であることが明示さ れた。

a) 50 k Hz

石膏厚	トランスデューサー中心間隔	100mm	110mm	120mm	130mm	140mm	150mm	160mm
5mm	実測伝播時間(μs)	35	36	38	40	41	42	57
	コンクリート伝播距離(mm)	122.7	127.7	133.4	142.4	146.5	149.8	213.8
10mm	実測伝播時間(μs)	35	39	42	44	46	49	53
	コンクリート伝播距離(mm)	102.0	116.7	128.2	138.1	147.1	157.7	173.3
15mm	実測伝播時間(μs)	38	41	44	47	50	52	55
	コンクリート伝播距離(mm)	92.7	105.0	115.7	128.0	141.1	150.1	159.1
20mm	実測伝播時間(μs)	39	46	48	50	52	53	57
	コンクリート伝播距離(mm)	75.2	101.5	111.3	119.5	126.1	131.8	146.6
コンク	リート伝播距離平均(mm)	98.2	112.7	122.1	132.0	140.2	147.4	173.2

b) 100 k Hz

石膏厚	トランスデューサー中心間隔	100mm	110mm	120mm	130mm	140mm	150mm	160mm
5mm	実測伝播時間(μs)	40	29	32	36	39	41	43
	コンクリート伝播距離(mm)	143.2	97.3	111.3	124.4	138.3	145.7	156.4
10mm	実測伝播時間(μs)	38	35	38	40	43	46	48
	コンクリート伝播距離(mm)	111.8	101.2	112.6	120.0	134.8	143.8	154.5
15mm	実測伝播時間(μs)	39	42	49	43	47	49	50
	コンクリート伝播距離(mm)	95.2	107.5	134.5	110.7	126.3	134.5	141.9
20mm	実測伝播時間(μs)	40	41	44	46	49	52	53
	コンクリート伝播距離(mm)	77.7	82.6	95.7	103.9	116.2	125.2	131.8
コンク	リート伝播距離平均(mm)	107.0	97.1	113.5	114.8	128.9	137.3	146.1

図-7 伝播距離計算結果