RC はりに AFS 補強した場合の力学的挙動に関する実験研究

日大生産工(院)○田村 章典 日大生産工 澤野 利章日大生産工 木田 哲量 日大生産工 阿部 忠

1. はじめに

高度経済成長期に建設された構造物、特に橋梁における鉄筋コンクリート(以下、RCと称す)部材に経年変化による老朽化や度重なる地震による劣化・損傷が顕在化し、構造物に対する安全性および信頼性が問題視されている。ところが、経済不振が長期化する我が国においては、公共構造物を新設することには理解が得られづらく、新設よりもコストを抑えることのできる補修・補強による既存構造物の延命が求められている。数多く開発される補強工法のなかでも、炭素繊維、アラミド繊維などを材料とした連続繊維シートを用いたFRP 接着補強工法は経済性、施工性において有効な手段として注目されている。

そこで本研究では、RC はりとアラミド繊維シート(以下、AFSと称す)補強を施した RC はりを用いて、荷重載荷実験と共振振動実験を行いAFS 補強を施した RC はりの力学的挙動を検証する。

2. 実験概要

2-1. 供試体

供試体には、断面寸法が異なる2種類の RC はり、タイプ I (断面高さ 250mm、断面幅 300mm、全長 2800mm)、タイプ II (断面高さ 210mm、断面幅 300mm、全長 2800mm)を 用いる。コンクリートには、普通ポルトランド セメントおよび最大寸法 20mm の粗骨材を使 用し、鉄筋は両タイプともに SD295A、D16を 引張側に3本、圧縮側に2本配置する。材料特 性値を表-1に示す。

また、両タイプともに、無垢の RC はりと、RC はりに AFS 補強を施した供試体の 2 種類の実 験を行う。なお、鉄筋配置図を図-1、供試体 呼称を表-2 に示す。

図-1 鉄筋配置

表-2 供試体呼

呼称	断面タイプ	補強の有無
I — N	タイプ エ	無
I —R	×1 > 1	有
II − N	タイプ Π	無
II — R	747 I	有
-		

2-2. 補強方法

供試体の引張面となる下面に AFS を貼り付けて補強を施す。

まず、AFSを貼り付ける表面をジェットタガ ネにより表面のモルタル分を除去して骨材を露 出させる。その後、表面を平滑にするためプラ イマー [住友ゴム工業(株)グリップボンド GB-30]を塗布し24時間養生した後、AFS[フ ァイベックス(株)フィブラシート AK60]を 含浸接着樹脂 [住友ゴム工業(株)グリップボ ンド GB-35]により貼り付け、7日間以上養 生する。なお、AFS の長さは載荷実験時に支点 材に拘束されないように支間中央から端部へ 930mm ずつの全長 1860mm とした。なお、 AFS の材料特性を表-3に示す。

表-3 AFSの材料符(長一3	AFS の材料特
--------------	-----	----------

反称	目付量	引張強度	弾性係数	設計厚
石竹	g∕ m ^²	N/mm ²	kN/mm ²	mm
AK-60	415	2060	118	0.286

 $\begin{array}{c} \mbox{Experimental Study on Mechanical Behavior of RC Beam Reinforced with AFS} \\ \mbox{by} \end{array}$

Akinori TAMURA, Toshiaki SAWANO, Tetsukazu KIDA, and Tadashi ABE

2-3. 実験方法

本研究では、非破壊試験である共振振動実験と 破壊試験である荷重載荷実験の2つを組み合わ せて行う。

1) 共振振動実験

供試体支間が 2000mm となるように供試体 を設置し、油圧式アクチェタにより鉛直方向へ の強制振動を入力する。この時、入力する強制 振動の加速度が一定になるように制御し、振動 数を0.5Hzずつ増加させるごとに供試体の中央 側面に貼り付けた小型ひずみゲージ式加速度計 により供試体の応答加速度を測定し共振振動数 を求める。この際、油圧式アクチェタによる強 制振動入力点は支点から中央に 100mm の位置 とする。

2) 荷重載荷実験

共振振動実験と同様に供試体支間が 2000mmとなるように油圧式アクチェタに設 置し、支間中央に集中荷重を載荷する。この時、 支間中央部のたわみ、引張鉄筋ひずみ、AFSひ ずみを測定する。なお、引張鉄筋ひずみは断面 幅の中央に配置された引張鉄筋のひずみを計測 し、AFS ひずみは支間中央部の AFS の表面の 中央と断面幅に対して両外側75mm 間隔の点 にひずみゲージを貼り付けて、その平均値を AFS ひずみとした。また、載荷荷重は9.8kN ずつ増加させ、最大載荷荷重を増加させるごと に共振振動実験を行い、供試体が破壊するまで それを繰り返す。概略図を図-2に示す。

3. 実験結果および考察

3-1. 耐荷力の比較

表-4に各供試体の最大載荷荷重を示す。こ れより、I-N供試体は78.4kN、I-R供試 体は107.8kN、II-N供試体は68.6kN、II-R供試体は98.0kNとなり、RCはりとAFS補 強RCはりを比較(R/N)すると、タイプIで は約1.38倍、タイプIIでは約1.43倍の耐荷力 の増大が確認できた。

	表-4	各供試体の最大載荷荷重
--	-----	-------------

供試体	最大載荷荷重(kN)	R/N
I — N	78.4	1 20
I – R	107.8	1.38
II — N	68.6	1.42
II — R	98.0	1.43

3-2. 共振振動数の変化

図-3 (a)、(b) は、それぞれの断面タイプ における載荷荷重増加に伴う共振振動数の変化 を無載荷状態の共振振動数を100%とした共振 振動数比として示したものである。これより、 RC はりと AFS 補強 RC はりの共振振動数の変 化を比較すると、タイプIでは載荷初期段階に 供試体 I-Nが3%程度の共振振動数の低下を 示している。これは初期ひび割れに伴い生じた 低下であると考えられる。一方、供試体 I-R は、ほぼ一定に推移している。しかし、供試体 I−N、供試体 I−R ともに 39.2kN 載荷後か ら破壊直前の荷重まで共振振動数が 80%程度 まで低下し、破壊後に急激な低下が生じる同様 の変化傾向を示した。次に、タイプⅡを比較す ると、供試体Ⅱ-Nは19.6kN 載荷後に共振振 動数が85%程度に低下し、その後、59.8kN載 荷後まで緩やかな低下を示し、破壊直前の 68.6kN載荷後と破壊後に急激な低下が生じた。 しかし、供試体Ⅱ-R では、載荷初期段階には 共振振動数の大きな低下を示さず、59.8kN 載 荷後までほぼ一定の値で推移し、その後、破壊

図-3 共振振動数の変化

後まで載荷荷重を増加させるごとに低下率を増 しながら低下し、供試体Ⅱ-Nのように急激な 低下を示さず、比較的に緩やかに低下した。

両タイプの供試体から、AFS 補強を施すこと により、無補強状態で生じていた載荷初期段階 の共振振動数の低下を生じないことが確認でき た。

3-3. 引張鉄筋ひずみ

図-4 (a)、(b) に、それぞれの断面タイプ における載荷荷重と支間中央部の引張鉄筋ひず みの関係を示す。また、本実験の鉄筋降伏ひず みは表-1に示す材料特性値から算出した約 1880×10-6とする。これより、RCはりとAFS 補強 RC はりの鉄筋降伏荷重を比較すると、タ イプ I では供試体 I – N は約 60kN、供試体 I -R は約 70kN であり、タイプⅡでは供試体Ⅱ -N は約 40kN、供試体Ⅱ-R は約 60kN であ る。よって、AFS 補強を施すことによりタイプ I では約 10kN、タイプⅡでは約 20kN、降伏 ひずみの発生を遅らせて、RC はりの耐力の増 加が確認できた。また、タイプ I は 19.6kN 載 荷時、タイプⅡでは9.8kN 載荷時まで微小なひ ずみ増加にとどまり、それ以降の荷重では AFS 補強RCはりのひずみの方が小さくなった。破

図-4 荷重と引張鉄筋ひずみ

壊荷重の付近では、RC はりも AFS 補強 RC は りも急激なひずみの増加となった。

3-4. AFS ひずみ

図-5 (a)、(b) に、それぞれの断面タイプ の AFS 補強 RC はりにおける載荷荷重と支間 中央部下面の AFS ひずみとの関係を示す。供 試体 I -R は 19.6kN 載荷時、供試体 II -R で は 9.8kN 載荷時まで微小なひずみ増加にとど まり、それ以降の荷重では供試体 I -R、供試 体 II -R ともに線形的な増加を示し、引張鉄筋 の降伏荷重以降の荷重で AFS ひずみが急激な 増加を示した。また、両供試体ともに最大載荷 荷重時の AFS ひずみは約 13500×10⁻⁶となっ た。表-3に示す AFS の材料特性値から本実 験で使用した AFS の公称破断ひずみを算出す ると、約 17500×10⁻⁶である。したがって、両 供試体とも破断ひずみに至っていないことが確 認できた。

3-5. 荷重とたわみの関係

図-6(a)、(b)に、それぞれの断面タイプ における載荷荷重と支間中央部のたわみの関係 を示す。これより、RCはりとAFS 補強 RC は りを比較すると、タイプ I では 19.6kN 載荷時 まで両供試体とも同様のたわみを示しているが、

図-5 荷重とAFS ひずみ

それ以降の荷重では供試体 I-Nに比べ供試体 I-Rの方がたわみが小さくなった。また、供 試体 I-Nは破壊直前の68.6 kN載荷時に急激 なたわみの増加が生じたが、供試体 I-R は 78.4kN 以降の荷重で徐々にたわみの増加量を 増して破壊に至った。タイプⅡでも 19.6kN 載 荷時まで両供試体とも同様のたわみを示してい るが、それ以降の荷重ではわずかに差が生じ、 供試体II-Nに比べII-R供試体の方がたわみ が小さくなり、供試体Ⅱ-Nは58.8kN 載荷時 にたわみが大きくなり、破壊直前の68.6kN載 荷時に急激なたわみの増加が生じたが、供試体 II-R は 58.8kN 以降の荷重で徐々にたわみの 増加量を増して破壊に至った。これらのことか ら、AFS 補強 RC はりは、引張鉄筋の降伏荷重 を上回る荷重に対して、たわみの増加量は著し く増えていくが、RC はりのような急激な増加 と破壊が生じることはない。このことから、鉄 筋降伏以降の荷重増加に対して AFS 補強の効 果が有効に発揮されたと考えられる。

3-6. 破壞形状

写真-1(a)、(b)、(c)、(d)に、供試体の 破壊形状を示す。供試体 I-N と供試体 II-N は、ほぼ同様の破壊形状となり、底面から曲げ ひび割れが進行し破壊に至った。供試体 I-R は一方の支点側の AFS 端部に剥離が発生する と同時にそこからひび割れが上部まで進展し破 壊した。供試体 II-R では片側の支点付近で AFS に剥離が発生し、それと同時に引張鉄筋に 沿ってひび割れが進展し、かぶりコンクリート が剥離して破壊した。また、両供試体ともに AFS の破断は生じなかった。

4. まとめ

- AFS 補強を施すことにより、RC はりと比 較してタイプ I では約 1.38 倍、タイプ II では約 1.43 倍に耐荷力が向上した。
- ② RCはりと比してAES補強RCはりの共振 振動数の変化傾向は緩やかに低下することが確認できた。また、初期ひび割れによる共振振動数の低下はなされていない。
- ③ AFS 補強を施すことにより、引張鉄筋の降 伏荷重がタイプ I では約 10kN、タイプ II では約 20kN 増加したことから RC はりの 耐荷力の増加が確認できた。
- ④ 引張鉄筋の降伏荷重を上回る荷重載荷時 からAFS ひずみが著しく増加する。
- ⑤ AFS 補強 RC はりは、引張鉄筋の降伏荷重

を越えてもたわみの急激な増加を生じる ことはなく、荷重増加に対して徐々にたわ みを増加させることから、AFS 補強の効果 は鉄筋の降伏以降の荷重増加に対して有 効に発揮されたと考えられる。

⑥ AFS 補強 RC はりの破壊形状は両タイプと
もに AFS に剥離が生じて破壊に至った。

参考文献

1) 村田 賢佑, CFS 補強した応力履歴 RC はりの力学特性に 関する実験研究,第 37 回日本大学生産工学部学術講演会,土木 部会,pp.21-24, (2004)

2) 新井 学,曲げ破壊履歴 RC 梁の繰り返しアラミド繊維シートによる補強効果に関する実験,第 38 回日本大学生産工学 部学術講演会,土木部会,pp.21-24, (2005)