応力腐食割れ(SCC)に対する渦電流探傷試験に関する研究

日大生産工(院) 〇三木 健司 日大生産工 小山 潔、星川 洋

1. まえがき

原子カプラントなどの構造物では、腐食環境 下で応力が加わると経年劣化に伴い応力腐食 割れ(SCC:Stress Corrosion Cracking)が発 生することがある。このような経年劣化に対す る安全性・信頼性確保のためには、非破壊検査 による検査・診断が不可欠である。

非破壊検査手法として、主に超音波探傷試験 や放射線透過試験が用いられている。しかし、 これらの試験法では長時間掛かったり、装置が 大掛かりになるという問題がある。

そこで、高速度に探傷が可能で試験体に非接 触であるなどの利点をもつ渦電流探傷試験が ある。渦電流探傷試験はコイルに交流電流を流 し、金属試験体に近づけ、試験体に渦電流を誘 導する。渦電流は試験体内の欠陥などの不連続 によって変化し、その結果磁界が変化してコイ ルのインピーダンスを変化させる。従って、コ イルのインピーダンスの変化を観測すること により、金属表面における不連続を検出するこ とが出来るというものである。しかし、従来の プローブではリフトオフ変化による雑音が大 きく、SCC のような微細なきずの検出精度が 低かった。そこで、SN 比の高い Θ プローブ⁽¹⁾ とクロスポイントプローブ⁽²⁾を用いて SCC に 対して実験を行った。

今回の報告では、構造の違った二つのプロー ブを用いて SCC の長さを精度高く評価するこ とを目的とした。

2. プローブの構造

● プローブの構造を図 1 に示す。 ● プロー ブは、円形横置きの励磁コイルと矩形縦置きの 検出コイルから構成されている。励磁コイルは 試験体に電磁誘導により渦電流を誘導する。検 出コイルは SCC により変化した渦電流で発生 した磁束を検出し、信号を発生する。

クロスポイントプローブの構造を図 2 に 示す。クロスポイントプローブは内側に巻かれ た縦置き矩形の励磁コイルと外側に巻かれた 矩形検出コイルで構成されている。この二つの コイルは互いに直交している。

Study on eddy current defecting out flaw examination to SCC

Kenji MIKI, Kiyoshi KOYAMA and Hiroshi HOSHIKAWA

3. プローブのきず検出原理

3.1. 0プローブの場合

試験体にきずがない場合の渦電流の流れを 図3に示す。試験体にきずがない場合には励磁 コイルの巻線方向に渦電流が誘導され、検出コ イルに鎖交する磁束の総和は零であり、(房は 発生しない。

きずに対して垂直方向に検出コイルを走査 した場合のきずによる渦電流の流れの変化を 表したものを図4に示す。きずがある場合には、 誘導された渦電流がきずに沿って流れ、きずに 沿って流れた渦電流が磁束を発生し、検出コイ ルの巻線方向と同方向の渦電流成分による磁 束をきず信号として検出する。

3.2. クロスポイントクローブの場合

試験体にきずがない場合の渦電流の流れを 図5 に示す。試験体にきずがない場合には励 磁コイルの巻線方向に渦電流が誘導され、検出 コイルの巻線方向には流れず、信号は発生しな い。

きずに対して渦電流を 135 度方向に誘導し た場合の渦電流の流れの変化を図 6 に示す。ク ロスポイントプローブがきずに近づいた場合、 誘導された渦電流はきずに沿って流れ、きずに 沿って流れた渦電流が磁束を発生し、検出コイ ルの巻線方向と同方向の渦電流成分による磁 束をきず信号として検出する。

4. 実験条件

実験に用いた Θ プローブの励磁コイルの寸 法は外径 9mm 巻線断面積 1×1mm²であり、検 出コイルの寸法は幅 7mm 巻線断面積 1×1mm² である。クロスポイントプローブの励磁コイル の寸法は縦 7mm 横 7mm 巻線断面積 1×1mm² であり、検出コイルの寸法は縦 7mm 横 9mm 巻線断面積 1×1mm²である。

試験体には SUS316 を用い、放電加工によ るきずと SCC を模したきずがある。

図5 クロスポイントプローブによる

図 6 クロスポイントプローブによる 渦電流と検出信号

放電加工きずの長さは 10mm、15mm、 25mm である。また、幅と深さはいずれの長 さの場合も同じで、幅 0.4mm、深さ 4.0mm と した。

Θプローブでは、放電加工きずに対して検出 コイルが垂直方向になるように設置して走査 した。また、クロスポイントプローブでは、放 電加工きずに対して、135度方向に渦電流を誘 導するように設置して走査した。SCC に対し て x,y 方向に±25mm の範囲を 0.5mm 間隔で プローブを走査し実験した。

初めに、きず長さに対する Θ プローブ、ク ロスポイントプローブのきず信号特性につい て実験を行った。これは、放電加工きずによっ てきず長さ評価の妥当性の確認し、同じ手法に よって SCC の長さ評価をするためである。

5. 実験結果

Θプローブで、放電加工きずの長さ10mm、
15mm、25mmの場合の出力信号を図7に示す。きずの両端付近で最大値と最小値の信号が
発生していることが分かった。

クロスポイントプローブで、試験体に放電加 工きず長さ 10mm、15mm、25mm に対する 出力信号を図8に示す。きずの両端付近できず 信号の始点と終点があることが分かった。

今回用いた試験体の SCC を浸透探傷試験した結果を図 9 に示す。きず長さは約 10mm であることが分かる。

放電加工きずの出力信号

図 9 浸透探傷による SCC のきず長さの測定結果

(b)クロスポイントプローブ
図 10 SCC の探傷信号
SCC の探傷信号を図 10 に示す。図(a)に Θ

プローブによる探傷信号、図(b)にクロスポイ ントプローブによる探傷信号を示す。図(a)で はプラス信号、マイナス信号の所に SCC があ ることがわかる。図(b)ではマイナス信号の所 に SCC があることが分かる。

SCC の検出信号を図 11 に示す。図(a)が Θ プローブによる検出信号を絶対値表示したも の、図(b)がクロスポイントプローブによる検 出信号を絶対値表示したものを示す。図(a)で は、二つの極大値の長さで SCC の長さが決定 できないことが分かる。これは誘導された渦電 流がきずを避けて流れる時、きずよりも大きな 形で流れてしまうのが原因であると思われる。

そこで、信号のどの割合で実際のきず長さに 近づくか評価を行った。放電加工きずと SCC に対しての Θ プローブ、クロスポイントプロ ーブでの長さ評価を表 1 に示す。SCC の最大 値、最小値の約 25%で SCC のきず長さに近づ くことが分かる。

Signal amplitude[V] θ.2 9.5mm **h** 1 -10 10 Probe position[mm] (a) Θ プローブ Signal amplitude[V] 13.5mm ₿.05 10 -10 0 -20 Probe position[mm] (b)クロスポイントプローブ

図11 プローブ位置に対するSCCの出力信号

6. まとめ

Θ プローブ、クロスポイントプローブを用い
て SCC に対して長さ評価を行った。その結果、

クロスポイントプローブは放電加工きず で安定した評価ができたが、SCC では評 価精度が低下した。対して Θ プローブの 方は、放電加工きず、SCC ともに安定し た評価結果となった。よって、 Θ プロー ブは SCC に対して精度高い長さ評価の 可能性があることがわかった。

表 1	Θプローブ、クロスポイントプローブに
	よる長さ評価

きずの種類	放電加工きず			SCC
実際のきず長さ	10	15	25	10
[mm]				
Θプローブ[mm]	11.0	16.5	26.5	9.5
クロスポイント	10.0	14.0	25.0	13.5
プローブ[mm]				

7. 参考文献

(1)柄澤英之、星川洋、小山潔:リフトオフ雑
音が発生しない渦電流探傷試験新型上置プロ
ーブに関する研究、非破壊検査、第 50 巻 11
号 pp.736-742(2001)

(2)小山潔、星川洋:渦電流探傷試験における一様渦電流プローブの基礎特性に関する研究、非破壊検査、第49巻11号pp777(2000)