MA法による磁性を有するマグネシウム基複合粉末の特性

日大生産工	(学部)	○渡辺	唯	日大生産工(院)	青木	翔
日大生産工	(院)	松島	弘樹	日大生産工	新妻	清純

日大生産工

1. 緒言

メカニカルアロイング(Mechanical Alloying : MA)法は,異種金属同士を固相状態のまま 複合化することができる.その際,ボールの衝 撃による加工硬化,粉末の破砕による結晶粒微 細化,溶質原子の固溶による固溶強化,添加す る酸化物粒子の分散による分散強化などの高 付加価値を粉末に与えることができる.また, 平衡状態図に依存せず過飽和に添加元素を固 溶できる利点がある.

軟磁性を示すソフトフェライトは飽和磁束 密度が大きく,保磁力が小さく,透磁率の大き い磁気特性を有する.硬磁性のハードフェライ トと違い磁界を取り除くと磁化が残らない.ソ フトフェライト(Fe₂O₃-ZnO-NiO-CuO)は酸 化鉄を主成分とする酸化物で,磁性材料として 広く用いられている.酸化物のため,安価で手 に入りやすく,その硬さは高い.

磁性体は磁界の中に置かれるとそれ自身が 磁石となる.これが磁化であり,磁界を強くし ていくとどこまでも磁化されるわけではなく, ある一定値で飽和する.この値を飽和磁化と呼 ぶ.保磁力は磁化された磁性体を磁化されてい ない状態に戻すために必要な反対向きの外部 磁場の強さのことである.本研究では軟磁性の ソフトフェライトを用いているので,磁化され ていない状態に戻りやすい方が適切である.よ って,保磁力は小さい方が望ましい.

Table 1Designation, composition andmechanical alloying time for test materials.

久保田 正広

Designation	Materia	MA time(h)		
Designation	matrix	compound	MA time(ii)	
12MgFR			2	
14MgFR		10 Ferrite	4	
18MgFR			8	
32MgFR		30 Ferrite	2	
34MgFR	Pure Mg		4	
38MgFR			8	
52 MgFR		50 Ferrite	2	
54MgFR			4	
58 Mg FR			8	

本研究の目的はマグネシウムに対して、フェ ライト粉末を添加することで軟磁性を付与さ せ、比強度を増大させたMA粉末を作製するこ とである.また、ソフトフェライトの添加量と MA処理時間の変化に伴うMA粉末の機械的性 質と磁気特性の変化を調べた.

2. 実験方法

2.1 供試材の作製

MA処理にはミル容器をモータによって,800 rpmで上下左右に複雑に振動させる振動型ボ ールミルを用いた.直径51 mm × 長さ64 mm の工具鋼容器に,直径約6 mmの工具鋼製ボー ルを70個(約70 g)および混合粉末10 g,焼 き付き防止としてステアリン酸0.75 g (CH₃(CH₂)₁₆COOH)を装入した.原料粉末と ボールの重量比は1:7とした.粉末の装入と取 り出しはAr雰囲気中で行なった.**Table 1**に配 合組成とMA処理時間を示す.配合組成は純マ グネシウム粉末(純度99.91%)にフェライト

Properties of Magnesium Based Composites Powder Exhibiting Magnetism Produced by Mechanical Alloying Yui WATANABE, Sho AOKI ,Hiroki MATSUSHIMA, Kiyozumi NIIZUMA and Masahiro KUBOTA 〔49.41 Fe₂O₃-32.09 ZnO-12.71 NiO -5.79 CuO (mass%)〕粉末を10,30,50 mass%と添加量 を変え, MA処理時間は2,4,8 hとした.

2.2 MA粉末の評価

MA粉末の硬さを測定するためにマイクロビ ッカース硬さ試験を行った.MA粉末はラピッ ドプレスを用いて樹脂に埋め込み,エメリー紙 で研磨し,研磨用アルミナ粒子でバフ研磨した. バフ仕上げした表面を測定面とし,マイクロビ ッカース硬度計(加圧力98 mN,保持時間20 s) を用いて15ポイント測定し,硬さを求めた.

MA粉末の構造回折はX線回折(XRD:X-Ray Diffraction)を行った.MA粉末は,Corodion とIsoamylの混合溶液で試料ホルダーに固めて から測定を行った.測定は40kV,60mAでCuK α線を用いて回折速度1.66×10⁻²°/sおよび 回折角度20~80°の条件で測定した.

MA粉末の磁気特性は振動試料型磁力計 (VSM: Vibrating Sample Magnetometer)を 用いて測定した.800 kA/mおよび40 kA/mの磁 界中で磁化(M)と保磁力(Hc)の関係(M-H 曲線)を測定することにより飽和磁化および保 磁力を求めた.初めに粉末Ni標準試料に800 kA/mの磁界を印加し磁化値の校正を行った. その後,各粉末試料の重量を5.0 ± 5 %mg程

度とし,電磁石のポールピースの間にある試料 ホルダーに取り付けて計測を行った.

3. 実験結果および考察

Fig. 1にPure MgとMg-Xmass% Ferrite (X= 10,30,50) 粉末の硬さを示す. Pure Mgの硬さ はMA処理時間の増加に伴って上昇している. これは加工硬化の影響であると考えられる. 一 方, Mg-10 mass% Ferrite粉末もMA処理時間 の増加に伴い硬さは上昇したがMA8 h処理を 施しても,添加したフェライト粉末のみの硬さ 112 HVには及ばなかった. 母材のPure Mgに 対してフェライトの添加量が少なく, 十分な

Fig. 1 Vickers microhardness of Pure Mg and Mg-X mass % Ferrite powder. 分散強化が得られなかったためだと考えられる.

Mg-30 mass% Ferrite粉末では,MA4hま でMA処理の効果(加工硬化,分散強化)が顕 著にみられた.しかし,MA2h~4hでは約60 HV,MA4h~8hでは約15 HVの増加を示し, 比較するとMA処理時間に伴う硬さの増加量が 減少している.これより,硬化が飽和し始めて いることが分かる.これは,MA処理による摩 擦エネルギーと変形エネルギーがひずみを解 放し,加工硬化を妨げたと考えられる.また, Mg-10 mass% Ferrite粉末では,MA処理を8h 施してもフェライト粉末のみの硬さには到達 しなかったのに対し,Mg-30 mass% Ferrite 粉末ではMA4hの段階でフェライト粉末を超 える硬さを示した.

Mg⁻ 50 mass% Ferrite粉末では, MA4hの段 階で144 HV, MA8hでは138 HVを示し, Mg-30 mass% Ferrite粉末と同様に硬さが飽和す る傾向を示した.また,短い時間で硬化してい ることから,フェライト添加量の増加により, 分散強化が十分に行なわれたためと考えられ る. Mg⁻ 50 mass% Ferrite粉末はフェライト より比重が小さく, MA処理により硬さも増大 しているので,本研究の目的であった比強度を 増大させることができた.

Fig. 2にMg- 10 mass% FerriteのMA処理時 間を変化させたときのX線回折パターンを示す.

Fig. 2 X-ray diffraction patterns of 12 MgFR,14 MgFR and18 MgFR powder.

Fig. 3 Crystallite size of Pure Ferrite and Mg-10 mass% Ferrite powder.

MA処理を行うとMgとフェライトの回折ピー クに加え, MgOとα-Feの回折ピークも同定さ れた.このMgOの生成は,MA処理中に粉末が 破砕することで現れる新生表面が活性である ためにフェライトやステアリン酸中の酸素と Mgが結合しやすくなったためと考えられる. α-FeはMgOの生成の際にフェライトが還元反 応して生成されたと考えられる.

また、MA処理時間の増加に伴い、フェライトの回折ピークが低くなってブロード化していることが確認できた.一般的に回折強度が低下し、ブロード化する理由として、結晶粒の微細化が達成されていることが知られている²⁾. また、フェライトの回折ピークより、X線の波長(CuK α 線:0.15418nm)を λ 、積分幅(積分強度/ピーク強度)をB、回折ピークの角度(rad)を θ Bとし、シェラー(Scherrer)の式(1)を用いてフェライトの(220)に対して垂直方向の結晶子の大きさtを求めた.

Fig. 4 X-ray diffraction patterns of 14 MgFR,34 MgFR and 54 MgFR powder.

Fig. 5 Magnetization of Mg-Xmass% Ferrite powder.

$$t = \frac{0.9\lambda}{B\cos\theta_B} \qquad (1)$$

Fig. 3にフェライトとMg⁻ 10 mass% Ferrite の結晶子の大きさの変化を示す.フェライト粉 末よりMg⁻ 10 mass% Ferrite粉末の方がMA処 理時間の増加に伴い,結晶子が微細化していな い.これより, Mg⁻ 10 mass% Ferriteの場合, 母材であるMgがフェライトの結晶子の微細化 を防いでいると考えられる.

Fig. 4にMA処理4h一定でフェライトの添加 量を変化させたときの構成相の変化を示す. MgOの回折ピーク強度がフェライトの添加量 の増加に伴い高くなっている.これより、フェ ライト粉末の分散強化だけではなく、MgOの分 散強化もMA粉末の硬さの増大に影響している と考えられる.

Fig. 5にMA処理時間とフェライト添加量を 変化させた時の飽和磁化を示す. 飽和磁化は MA処理時間に関わらず,ほぼ一定値を示して

いる.そして,添加量が増加するにつれて飽和 磁化も相対的に大きくなっていることが確認 できる.

Fig. 6にMA処理時間とフェライトの添加量 による保磁力の変化を示す. Mg-10 mass% Ferriteでは、保磁力がMA処理時間に伴って増 大の傾向にある. 保磁力は結晶子が小さくなる と増大する.したがって、加工硬化によるひず みの導入のために結晶子が微細化したことが 原因と考えられる. Mg-10 mass% Ferrite粉末 の結晶子がMA処理時間の増加に伴い微細化し たことは、シェラーの式から得たFig. 3で確認 されている.他の要因として,MA処理中にα -FeとMgOが生成したことで、保磁力が増加し たと考えられる.X線回折の結果, 硬磁性(保 磁力が高い)の元素であるα-Feの相対強度の 最大ピークが、わずかに確認されている.しか し, **Fig. 2**よりMA処理時間の増加に伴うα-Fe の回折ピーク強度に変化はなく、 α-Feの生成 量は増加していない.よって生成された α -Fe は保磁力の増加に影響を与えたとは考えられ ず,保磁力の増加に化合物の生成は起因してい ないと考えられる.

4. 結言

本研究では、マグネシウムに対してフェライ ト粉末を添加し、MA処理を施すことで軟磁性 を付与させ、比強度を増大させたMA粉末を作 製した.作製したMA粉末の機械的特性と磁気 特性を評価し、得られた知見を以下に示す.

- 1) MA粉末は加工硬化,酸化物の分散強化に よって硬さが増大した.
- 2) MA粉末はフェライトの添加量を増やすと 短い時間で硬化は飽和し,最大の硬さを示 した.
- MA粉末はMA処理中にフェライトが還元
 し、MgOとα-Feが生成した.
- 4) MA処理によるフェライト粉末の微細化と 結晶子の微細化が確認され、保磁力の増加 が確認された。

Fig. 6 Coercive force of Mg-Xmass% Ferrite powder.

5) Mg粉末とフェライト粉末をMA処理するこ とで飽和磁化を損なわない複合粉末を創製 することができた.

参考文献

- 金子純一:メカニカルアロイングの30年と アルミニウム基材料,軽金属,50 (2000), pp.237-245
- 2) 早稲田嘉夫,松原英一郎:X線構造解析原子の配列を決める,内田老鶴圃(1998) pp.119-126
- 青木翔,水谷祐平,久保田正広,新妻清純, 粉末冶金法で複合化されたアルミニウム基 磁性材料の特性,軽金属学会第116回春期大 会講演概要,(2009), pp.103-104