日大生産工(院) ○菊池 俊司 日大生産工 菅又 信

1.緒言

マグネシウム圧延板は常温において塑性加工 性が劣るため、板材としての需要は少ない.これ はマグネシウムの結晶構造が六方晶であり、圧延 板では優先すべり面である六方晶の底面が板面 に平行に配列する強い底面集合組織の形成によ るためである.しかし前年度の実験から表面に塑 性変形能の高い 1050 純アルミニウム板をクラッ ドしたマグネシウム板の成形性が向上した.本研 究では表面材に Mg を合金として含む 3004 およ び 5052 アルミニウム合金板と AZ31-マグネシウ ム合金板のクラッド板を高温圧延によって製作 し、その性質を調べることを目的とした.

2.クラッド板製作工程

母材は板厚 2.5mm の AZ31-O 材であり,表面 材は板厚 0.5mm と 0.7mm の 3004-O 材及び 5052-O 材とした. 圧延スタート材の圧延方向を 150mm として,幅 100mm に切断する. クラッ ド板の名称は表面材の厚さと材質,張り合わせ方 から Table1 のように呼称する.

Table 1 Conbination of clad sheets

Clad sheet	Designation					
	0.5mm one side	0.7mm one side	0.5mm both side	0.7mm both side		
AZ31/3004	5A3	7A3	5AA3	7AA3		
AZ31/5052	5A5	7A5	5AA5	7AA5		

加熱ロール圧延機により1パスあたりの圧下率 を 20%, ロール速度は 0.1m/min, 圧延温度は 300℃とし最終板厚 1.0mm のクラッド板を作製 した. 圧延中に表面材がロール面に張り付くこと から, ロール面に黒鉛系の潤滑剤を塗布した.

Tabel 2 に圧延条件を示す. 5A 系と 7A 系は 5パスまで, 5AA 系と 7AA 系は 6 パスまで圧延した. 圧延スタート材の母材および表面材のクラッドする面をエメリー紙(150 番)で十分荒らした後,

Ar ガス雰囲気炉中に圧延温度で 10min 保持した 後に圧延を開始した.途中加熱することなく最終 板厚に仕上げた.

Table 2 Rolling conditions of tested sheet

Designation	Rolling speed (m/min)	Rolling temperature (°C)	Total rolling pass	Total rolling reducution (%)	Thickness of clad sheet (mm)
5A3 & 5A5	0.1	300	5	66	1
7A3 & 7A5			5	69	
5AA3 & 5AA5			6	71	
7AA3 & 7AA5			6	74	

3.実験方法

3.1 界面化合物の観察

圧延方向に 50mm,幅 100mm に切り出した圧 延ままのクラッド板と 250℃から 350℃までの範 囲で焼きなましたクラッド板の圧延方向に対し て 90°の断面を樹脂に埋め込んだ.試料断面を バフ研磨まで仕上げて光学顕微鏡(500倍)で観 察した.断面の化合物層の厚さは 3 箇所の平均値 から求めた.

3.2 X 線回折

母材と表面材の界面に存在する化合物を、X 線 回折によって同定した. X 線強度を 40kV,60mA とした CuK α 線を用いて回折角 2 θ =20~80° の範囲で X 線回折パターンを求めた.

3.3 集合組織

製作した圧延板の集合組織をX線回折装置に てシュルツの反射法を用いて測定した.試験片の 寸法形状は直径 40mm,厚さ 1.0mmの円板とし 表面はエメリー紙で # 2000 まで研磨した後,バ フ研磨で鏡面とした.

3.4 引張試験

クラッド板の圧延方向に対して,0°,45°90° の3方向から引張試験片を採取した,試験片形状

Properties of clad sheet of AZ31 magnesium alloy/aluminum alloy by hot rolling Shunji KIKUCHI and Makoto SUGAMATA は標点間距離を 30mm, 幅を 12.5mm とした. 引張温度は常温, 引張速度は 3.0mm/min として, 3本の平均値により引張強さ, 伸びを求めた. 3.5 エリクセン試験

クラッド板から φ 75mm の円形ブランクを加 工し試験片とした. 各条件で 3 枚ずつ試験をし, その平均値をエリクセン値とした. 試験温度は常 温とし, ポンチ押し込み速度は 6mm/min で一定 とした. 5A 系と 7A 系についてはポンチ接触面を 母材側および表面材側とした 2条件でエリクセン 値を求めた.

4.実験結果

4.1 界面化合物の観察

クラッド板を焼なましすると、母材と表面材の 界面に化合物の生成がみられた. Fig.1 には 5A3 試料, Fig.2 には 5A5 試料の焼きなまし条件ごと の断面の写真を示す. 上層が母材, 下層が表面材 である. Fig.3 には 5A3 試料, Fig.4 には 5A5 試 料の焼きなまし条件ごとの化合物の厚さを示す. 両クラッド試料において圧延のままでなお 10μ m 以下の化合物が生成した.焼きなまし温度が 250℃と 300℃の条件ではほぼ直線的に化合物が 増加し、焼きなまし温度が 350℃では 1h までの 化合物の厚さは急激に増加するが、以降は直線的 に増加した.また化合物層の増加量の変化では表 面材の違いによる明確な差はなかった. これらの 化合物層の観察結果より 250℃×1h(A 条件), 350℃×1h(B条件), 350℃×8h(C条件)の焼なま しによって, 化合物の厚さを変化させた各クラッ ド板の引張特性値とエリクセン値を調べた. 4.2 X 線回折パターン

5A3 試料の Al を NaOH 水溶液で溶解して, 露 出させた界面の X線回折パターンを Fig.5 に示す. 図中には比較として(d), (e)には母材と表面材の 回折パターンを示す. A 条件で小さい Al₃Mg₂ の ピークが確認され B, C の条件でピークが強くな っており, いずれの条件でも界面に硬く脆い Al₃Mg₂が生成している.

Fig.1 Optical micrographs of 5A3 after annealing at various conditions a) A.S. ,b) 250°C×1h,c) 350°C×1h,d) 350°C×8h

Fig.2 Optical micrographs of 5A5 after annealing at various conditions a)A.S. ,b) 250°C×1h,c) 350°C×1h,d) 350°C×8h

Fig.4 Thickness of intermetallic compound layer of 5A5 after annealing at various conditions

4.3 集合組織

Fig.6にA条件で焼きなました5A3試料と5A5 試料のAZ31側のロール接触面での(0001)面の 正極点図を示す.5A3試料では底面集合組織が形 成されているが,5A5試料では圧延方向に(0001) 面が板面に対して傾いている.表面材の5052-O の300℃での変形抵抗が母材であるAZ31-Oと比 べ高く,圧延されることでロール接触面側の母材 が表面材の接触面よりも先進することにより,異 周速圧延と同じ効果が得られたと考えられる. 5A3 試料の場合は変形抵抗が近いため(0001)面 が板面と平行に集合組織が形成されたと考えら

4.4 引張特性値

れる.

Fig.7 に A 条件,Fig.8 に C 条件での AZ31/3004 クラッド板の引張特性値, Fig.9 に A 条件,Fig.10 に C 条件での AZ31/5052 クラッド板の引張特性 値をそれぞれ示す.比較材として母材と表面材を それぞれ M, A と示す.表面材の違いによる明確 な引張特性値の差はない.伸びはいずれの条件で も 90°>45°>0°の順となる.引張強さは A 条

Fig.6 (0001) pole figures of AZ31 of clad sheet a)5A3-250°C $\times 1h$, b) 5A5-250°C $\times 1h$

件では角度別,クラッド板の種類別にみても差が 少ないが,C条件では化合物の増加により差が大 きくなり,同時に引張特性値が大きく低下してい る.クラッド材は圧延方向に対して垂直に波うっ た界面ができるため,0°方向ではその影響を受 けて,引張特性値が低くなり,同時に焼きなまし 条件の高温,長時間化により硬く脆い化合物が生 成することにより,引張特性値が低下している. 4.5 エリクセン値

Fig.11 に A 条件,Fig.12 に C 条件での AZ31/3004 クラッド板のエリクセン値, Fig.13 にA条件,Fig.14にC条件でのAZ31/5052クラッ ド板のエリクセン値をそれぞれ示す. 5A 系, 7A 系はいずれも表面材側よりも母材側からポンチ を押し込む条件で値が高くなっており、5A 系よ りも 7A 系が高い値を示した. これは表面材の割 合が増加するためである.検証のため表面材に 1mm の 5052-0 材を使用し 10A5 試料を作製し 試験した結果, A 条件と B 条件において 5A5, 7A5 よりも 10A5 が高い数値を示した. また AZ31/5052 クラッド板が集合組織観察にて確認 された底面の傾きのため、AZ31/3004 クラッド板 よりも全体的に高い値となったと考えられる.化 合物の影響により 5AA 系, 7AA 系において顕著 にエリクセン値が低下した.

5.結言

 Mg 濃度の高い 5052 合金板を表面材とした クラッド板の界面に生成する化合物層の厚さは、
Mg 濃度が低い 3004 合金板と比べて明確な差は なかった。

AZ31/3004 および AZ31/5052 クラッド板とも
250℃×1h の焼きなましにより引張強さの異方
性が低下した.

3) AZ31/5052 クラッド板では底面集合組織の集 積度がやや低くなった.

両クラッド板とも AZ31 マグネシウム合金板
と比べてエリクセン値が増加した.

