エマルジョン伝熱媒体による冷却制御

日大生産工(院)	大橋 篤	日大生産工	山﨑 博司
日大生産工	野村 浩司	日大生産工	氏家 康成

1. 緒言

乳化とは、相互には溶け合うことのない油と水のよう な
融を
混合・
均一化し、
分離している
2 つの
流体を
界 面刮掛手を用いてエマルジョン化させる技術である. エマルジョンには,乳化形式や滴直径分布などの内部構 造が存在するため、その性質は極めて鬱結は様相を呈す る.この内部構造は,流体力学的性質や熱的性質に大き く影響し,また界面活時的性質や温度によっても変化 するため , それらを詰結†パラメータとして取り扱うこと で、より高機能な伝表媒体の開発に寄与できると考えら れる、エマルジョンについては、その沸鬱特性に着目し、 光学的観察によりその特性を明らかにした研究¹¹や伝熱 特性2,発泡特性3などについての検討がなされてきた. しかしながら内部構造の複雑性ゆえに,十分な基礎が知 見が得られているとは言い難いのが現状である.本研究 は,液体の物性や種類によらず,様々な組合せを実現で きるエマルジョンの特徴を利用することで,これまでに 水中油商型エマルジョンにおける伝熱特性物や、油中水滴 型エマルジョンの伝熱特性に対する雰囲気温度の影響の 研究⁵⁾などを検討してきた.ここでは,油中水商型エマル ジョンにおける含水率の影響について伝熱実験を行った ので,その結果について報告する.

2. 実験装置および方法

伝熱実験は,密閉型容器内に浸漬された水平細線につ いて行った 実験装置の概略を図1 に示す 実験装置は, 電極を取付けた密閉型実験容器,電剤共給系,計測系お よび温度制御係から構成される.密閉型実験容器はステ ンレス製であり,上部フランジ部に電極,攪拌器および 標準温度けが取り付けられている。容器側面には凝縮器 と導管があり,容器内で発生する蒸気を凝縮し,容器下 部へと還流させる. 凝縮器上部にはバルーンを付加して あり,これによって容器内は大気圧に保たれている.伝 熱面にはR細線を用いる.R細線は定電和回路により直 接電気加熱される . プライコントローラからなり ,PC に よって GP-IB 制御される. 電源装置には, シャントユニ ットおよびシャントを付加し補償するとともに,それら のリードバック値を計測することで電流値を求めた. Pt 細線の温度は,抵抗値変化から決定し,その抵抗値は Pt 細線間の電流・電圧値から求めた.計測系はデジタルマ ルチメータ・スキャンユニットおよび PC からなり,両 者電剤共給系とともに GP-IB 制御されている.温度制御

Test Emulsion
Container
Condenser
Cooling Tube
Heater
Transformer
Digital Multi-meter
Shunt
DC Power Supply

Pt Wire Stirrer Balloon Thermocouple Temperature Controller Programmable Scanner Personal Computer Controller

Fig.1 Schematics of experimental apparatus.

系はヒータ,温度制御裝置および変圧器からなる.実験 は,容器内温度が所定の温度となったことを確認後,電 流値を変化させて行った.電圧測定は10s間隔で60s間 について行った.実験範囲は,熱流束 $q_{w}=10^{3}$ W/m² ~ 10^{6} W/m² の範囲とし,雰囲気温度を変化させて伝熱面と雰 囲気温度 T_{a} との温度差 T_{w} と熱流束 q_{w} を測定した.

乳化充体は,純水,シリコンオイルおよび界面活性剤で構成した.(烘式シリコンオイルにはジメチルシリコンオイル(比重0.852,動粘度1.5×10⁵ m²/s)を使用した. 界面活性剤にはソルビタンモノオレエート(レオドールSP-010V,HLB=4.3)を使用した.(烘式エマルジョンは所定の体積比率で混合し,スクリュー型間料器を用いて混合・安定化させた.実験は,界面活性剤の体積割合を0.03,含水率 c_w を0.3 として伝練実験を行った.

3. 実験結果および考察

図2 に T_a =353 K としたときの低費 判当における 伝熱特性を示す 横軸は 雰囲気 温度 T_a と伝熱面との 温度差 T_w ,

Cooling Control Method Using Heat Transfer of Emulsions Atsushi OHASHI, Hiroshi YAMASAKI, Hiroshi NOMURA and Yasushige UJIIE

Fig.2 Heat transfer characteristics in water/silicon oil emulsion.

Fig.3 Effect of ambient temperature on heat transfer coefficient in water/silicon oil emulsion.

縦軸は熱流束_{qw}である.図より, T_w=40~50K 近傍を 境に熱流束の増大が確認できる.これは,エマルジョン 中の低沸点成分の沸点に起因するものであり、既報^のでの 油中水商型エマルジョンによる検討と同様の実験結果を 得られた.

図3 に雰囲気温度 T_a を変化させた場合の熱気室率変化を示す.横軸は雰囲気温度 T_a との温度差 T_w ,縦軸は熱気室率 h_w である.図より, T_a の違いによって h_w の立ち上がる温度差領域に違いがあることが確認できる.

図4 にT_a=333 Kのときの熱気室率変化に与える攪拌の 影響について示す、図より、高潤、抑制において qwが増大 しているのが確認できる、これは、潤料により発生した 槽内の流症ができ物促進に寄与したものと考えられる、

図5 に T_a=353 K としたときの含水率の違いによる熱 伝達率変化を示す.図より, c_w=0.2 の油中水滴型エマル ジョンの場合, c_w=0.3 に比べて, h_wは減少している.こ れは,粘度上昇に伴う流動性の変化によって,熱が移動 が抑制されたためと考えられる.また,低沸点成分の沸 点に起因すると思われる T_wの変化に違いが確認できる これは,水の持つ潜熱だけ辣輸送が抑制されたためと考

Fig.4 Effect of stiring condition on heat transfer coefficient in water/silicon oil emulsion.

Fig.5 Effect of volumetric water content on heat transfer coefficient in water/silicon oil emulsion.

えられる.

4. 結言

油中水滴型エマルジョンの伝熱特性について伝熱実験 を行った結果,以下の結論を得た.

1) 分散相に低沸点成分を用いた場合,その沸点に起因 する伝熱促進が存在する.

2) 含水率によって、その伝熱モードの形に大きな違い は見られなかったが、熱輸送量の変化が確認できた。

参考文献

1) Mori, Y., ほか2 名, Int. J. Multiphase Flow, 6(1980), 255.

2) Lazarenko, B.R., ほか2 名, Int. J. Heat Mass Transfer, , 18(1975), 589.

3) Avedisian, C. T., Andres, R. P., J. Colloid Interface Sci., 64 (1978), 438.

 4) 山崎まか2名,第44回伝熱シンポジウム,(2007), A231

5) 大橋,熱工学コンファレンス2007,(2007),259-260.