テスト長制約下での欠陥検出率向上のための 状態可観測な FSM のテスト生成法

日大生産工(院) 〇井上 諒一 日大生産工 細川 利典 奈良先端大 藤原 秀雄

1 はじめに

半導体微細化技術の進歩のため、LSI が大規模化、複雑化 し、LSI のテスト設計技術が重要になっている. これまで、 LSI のテスト方法として、縮退故障を対象としたスキャンテ スト[1,2]が、広く普及しているが、近年、ディレイテスト[3] や実動作速度機能テスト[4]が必要であるということが報告さ れている. スキャンテストは回路構造の情報のみを利用した テスト法で、シフト動作によって、回路を無効状態に遷移さ せてテストする場合がある. したがって, スキャンテストは オーバーテストを行っていると考えられ、そのため歩留まり 損失が存在する.また,近年LSIの設計生産性向上のために, LSI のコントローラ部は有限状態機械(Finite State Machine : FSM)で設計されることが多い. FSM は回路仕様 が明に記述されているので、この回路仕様の範囲内でテスト することにより、オーバーテストによる歩留まり損失を抑制 できると考えられる.これらを考慮し、完全な論理テスト、 タイミングテストが可能である故障非依存な1パターンテス ト生成法,2パターンテスト生成法が提案されている[5.6]. しかしながら、状態遷移数が増加するとテスト長が激増する という問題がある.一方,故障モデルに依存したテスト生成 法である故障モデル依存テスト生成法が提案されている[5,6]. このテスト生成法では現実的なテスト長になるが、対象とし た故障モデル以外の故障モデルに対する故障検出率が高いと はいえない.

ブリッジ故障やトランジション故障などの主な故障モデ ルは、故障活性化率[7]を向上させるための縮退故障のn回検 出テスト生成で比較的多数検出できることが報告されている [7].そこで、指定された故障モデルを確実に検出するテスト 生成を行い、かつできるだけ文献[7]で提案されているn回検 出テストを含むようなテスト系列を生成すれば、現実的なテ

図1 状態可観測なFSM の論理回モデル

スト長で品質の高い論理テスト,タイミングテストができる と考えられる.

本稿では、テスト長の制約下で指定された故障モデルを完 全にテストし、できる限り故障活性化率を向上させる n 回検 出テストを含んだテスト生成法を提案する.また、状態可観 測な FSM のテスト品質を評価する尺度として、重み付状態 遷移被覆率を提案する.

2 状態可観測なFSM

FSM は論理合成により、同期式順序回路に合成され、DFT の適用により図1のように、状態レジスタの出力が可観測に なるようにする.マルチプレクサを付加し、PPI とマルチプ レクサの入力を接続し、マルチプレクサの他の入力をデータ パスの出力と接続し、マルチプレクサの出力を外部出力と接 続することで、外部出力ピンのオーバーヘッドを抑えること ができる[8].状態可観測な FSM のテストは、現在状態から 外部入力値を印加し、外部出力 (PO)を観測し、次状態へ状 態遷移させて状態レジスタの出力 (PPI) を観測することを 繰返す.

A Test Generation Method for State Observable FSMs to Increase Defect Coverage under the Test Length Constraint

Ryoichi INOUE, Toshinori HOSOKAWA, and Hideo FUJIWARA

3 故障活性化率n回検出テスト生成

(定義1:故障活性化率)

故障fの故障活性化率は、fから到達可能な信号線数のうち、 テスト集合Tによってfについて活性化された信号線数の割 合を表したものである.ここで、fについて活性化された信 号線とは、fが検出されたときの故障伝搬経路である.また 回路全体の故障活性化率は、各故障の故障活性化率の平均値 を表す.以下に故障活性化率の計算式を示す.

・senf: 故障fの故障活性化率

 $seng = {活性化された信号線数} {故障fから到達可能な信号線数} × 100 (1)$

・SEN:回路全体の故障活性化率

$$SEN = \frac{\sum sen_f}{\text{ito i i b i m}} \quad (2)$$

故障活性化率n回検出テスト生成(以降FSOD)は、故障 活性化率を向上させるように以下の戦略に基づいて縮退故障 のn回検出テスト生成を行っている[7].

- (1) 各故障に対して、故障箇所から異なる故障伝搬経路を通 って、検出するテストパターンをn個生成する.
- (2) 構造的に長い経路を活性化するように、故障伝搬経路を 選択する.

4 状態可観測な FSM のテスト生成

本手法は、状態可観測な FSM から FSM テスト生成グラ フを作成し、経路を探索することによりテスト系列を生成す る. 生成したテスト系列を評価する尺度として、論理故障を 検出する能力を評価する重み付 1-状態遷移被覆率と、タイミ ング故障を検出する能力を評価する重み付 2-状態遷移被覆率 を提案する.

4.1 FSM テスト生成グラフ

(定義2:FSM テスト生成グラフ)

FSMテスト生成グラフは、有向グラフG=(V, E, s, d, t)であり、 頂点 $v \in V$ は、状態遷移を表し、各頂点にはラベルs, d, tが割り 付けられる. s: V→A (ただし、A={PPI₁PPI₂ … PPI_m}, PPI₁, PPI₂, …, PPI_m∈{0,1}, mは状態レジスタ数), d: V→A (た だし、A={PPI₁PPI₂ … PPI_m}, PPI₁, PPI₂, …, PPI_m∈{0,1}, mは状態レジスタ数), t: V→B (ただし、B={PI₁PI₂ … PI_n}, PI₁, PI₂, …, PI_n∈{0,1}, nは外部入力数) である. ラベルsは 状態遷移元の状態を表し、ラベルdは状態遷移先の状態, ラベ ルtは状態sから状態dへ状態遷移する状態遷移入力を表す. ま た、辺(u, v)∈E (u, v∈V) は、頂点uのラベルdの状態と頂点 vのラベルsの状態が一致していることを意味し、連続する二 つの状態遷移ペアを表している. さらに、FSMテスト生成グ ラフの頂点と辺に、それぞれ重みを付加する. 頂点の重み w.(v) (v \in V) は、頂点vの(s, t)がFSODで生成したテストパ ターンに相当する場合、重み1とする. その他の場合は0と する. 辺の重みw.((v1,v2)) (v1,v2 \in V, (v1,v2) \in E) は、頂点 v2 に付けられた重みw.が1の場合、頂点v1の(s, t)と頂点v2 の(s, t)とのハミング距離とする. 頂点v2 に付けられた重み w.が0の場合、w.((v1,v2))は0とする.

FSOD で生成したテストパターンを実行することで,論理 テストの品質が向上すると考えられる.一方,パス遅延テス トの品質には、1パターン目と2パターン目で経路上のFF(ま たは外部入力)にトグルが起こる必要がある.したがって, 二つのパターンのハミング距離が大きいとトグルする可能性 が高いと考えられる.また,二つのパターンのトグル率が大 きいと,内部の信号線のトグル回数も多くなる傾向があると 報告されている[9]ので,二つのパターンで故障箇所のトグル が発生する可能性が高くなる.よって,二つのパターンのハ ミング距離が大きくなるようなテスト系列を生成することで, パス遅延故障,遷移故障の品質が向上すると考えられる.

4.2 重み付状態遷移被覆率

FSM テスト生成グラフで頂点と辺に定義した重みを用い て、下記のように重み付 *1*-状態遷移被覆率と重み付 2-状態遷 移被覆率算出する.

(定義2:重み付1-状態遷移被覆率)

重み付 1-状態遷移被覆率は状態可観測な FSM の論理テストの品質を評価する尺度として利用される.

(定義3:重み付2状態遷移被覆率)

重み付 2 状態遷移被覆率は状態可観測な FSM のタイミング テストの品質を評価する尺度として利用される.

重み付2 – 状態遷移被覆率 =	<i>(</i> .)
∇mor [各頂点の入力となる辺でテスト系列で]	(4)
\sum_{ν} inax 被覆されている辺の重み $\int_{\times 100(\%)}$	

以下に与えられたテスト長で、有効状態で検出可能な縮退 故障[5,6]を検出してかつ、重み付 *I*-状態遷移被覆率、重み付 2 状態遷移被覆率を最大化する状態可観測な FSM のテスト 生成問題を定式化する.

(定式化)

入力:状態可観測な FSM,有効状態で検出可能な縮退故障に 対する故障検出率 100%のテスト生成モデルのテストパター ン集合 制約:テスト長 出力:テスト長制約下において有効状態で検出可能な縮退故 障をすべて検出できる状態可観測な FSM に対するテスト系 列

最適化:①重み付 I-状態遷移被覆率, ②重み付 2-状態遷移被 覆率

まず、PPI が必ず有効状態になる制約を設定して FSOD を 実行し、FSOD で生成されたテストパターン集合を生成する. その後、FSM テスト生成グラフを生成し、与えられた縮退故 障テストパターン集合と FSOD で生成したテストパターン集 合を FSM テスト生成グラフの頂点に割り付ける. 最後に、 FSM テスト生成グラフにおいて、縮退故障テストパターンが 割り付けられた頂点を少なくとも1回通る経路を探索する. そのときに FSOD で生成されたテストパターンが割り付けら れた頂点をできるだけ通るようにし、重み付 *F*状態遷移被覆 率を増加させる. また、重みが大きい辺をできるだけ通るよ うにし、重み付 *2*状態遷移被覆率を増加させる. なお、テス ト長制約の下で全ての縮退故障テストパターン集合を被覆で きなかった場合は解なしとする.

4.3 テスト生成戦略

FSM テスト生成グラフに対して,現状態から長さ k の状 態遷移探索をおこない全経路を抽出する. 全経路の内,優先 度のヒューリスティックに従って経路を選択する.

(優先度のヒューリスティック)

状態遷移探索の初期は、未実行の縮退故障の頂点が多いので、 比較的縮退故障の頂点を通る確率が高い.ここで、縮退故障 の頂点とは FSM テスト生成グラフにおいて、縮退故障テス トパターンが割り付けられた頂点のことである. k 状態遷移 した経路の内、一つでも有効テストパターンが割り当てられ ている頂点の数が1以上の経路があった場合、比較的縮退故 障の頂点を通る確率が高いと考える.この場合、条件3→4→ 5→1→2 の優先順位で経路を選択する.その後、未実行の縮 退故障の頂点が少なくなると、縮退故障の頂点を通る確率が 低くなる. k 状態遷移した全経路で、有効テストパターンが 割り当てられている頂点の数が0になることが続けてm回あ った場合、縮退故障の頂点を通る確率が低くなったと考える. この時点で、優先順位を条件1→2→3→4→5に変更し経路を 探索する.なお、k,mはそれぞれパラメータとして外部から 設定できる.

- 指定された故障モデルのテストパターンを全て被覆する 必要があるので、k 状態遷移の内の有効テストパターン
 が割り当てられている頂点の数が多い経路を優先的 に選択する.
- テスト長を短縮するために、k 状態遷移において有効テ ストパターンが割り当てられている頂点までの距離が最 短の経路を選択する.

- 3. 論理テスト品質を向上させるため、重み付 I-状態遷移被 覆率が向上するように、k 状態遷移の内の頂点の重み wv の合計が多い経路を優先的に選択する.
- テスト長を短縮するために、k状態遷移において FSOD で生成されたテストパターンが割り当てられている頂点 までの距離が最短の経路を選択する.
- 5. タイミングテスト品質を向上させるため、重み付 2状態 遷移被覆率が向上するように、k 状態遷移の内の辺の重 み we の合計が多い経路を優先的に選択する.

5 実験結果

本テスト生成法を実装して,MCNC'91 ベンチマーク回 路[10]に対して実験を行った.表1に故障非依存な1パター ンテスト生成法(1a)[5,6]と縮退故障を対象にした故障依存 1パターンテスト生成法(1b)[5,6]の実験結果を示す.表2 にヒューリスティックの優先度切り替えのタイミングである mの値を1にしたときの本手法の実験結果を示す.表3にテ スト長をそれぞれ300,500に制限したときの本手法の実験 結果を示す.表中に*印のある回路はテスト長300,500で完 全に縮退故障を被覆できなかったものを表している.

まず, mの値を1にしたときの本手法の結果を考察する. 縮退故障は完全にテストでき,縮退故障を対象にした故障依存な1パターンテスト生成法と比較し,同等のテスト長で重み付 *P*状態遷移被覆率が平均14.15%,重み付 *2*状態遷移被 覆率が平均14.46%向上している.ブリッジ故障検出率が平均 0.48%,パス遅延故障検出率が平均12.87%,遷移故障検出率 が平均9.53%向上している.特にstyrに関しては,重み付*F* 状態遷移被覆率が10.2%向上し,ブリッジ故障検出率が 0.21%向上している.さらに,重み付*2*状態遷移被覆率が 11.82%向上し,パス遅延故障検出率が23.38%,遷移故障検 出率が28.06%向上し,タイミングテストの品質が向上している.

次に、テスト長を制限したときの本手法の結果を考察する. 縮退故障は完全にテストでき、故障非依存な1パターンテス ト生成法と比較し、大幅にテスト長を削減し、その他の故障 モデルも比較的高い検出率を得ることができている.特に、 テスト長を500に制限したときのs386に関して、重み付2 状態遷移被覆率が8.42%向上し、パス遅延故障検出率が 3.89%、遷移故障検出率が4.43%向上している.

6 おわりに

本稿では、状態可観測な FSM に対して指定された故障モ デルを完全にテストし、できる限り故障活性化率を向上させ る n 回検出テストを含んだテスト生成法を提案した.また、 状態可観測な FSM の論理テストとタイミングテストの品質 を評価する尺度として、重み付状態遷移被覆率を提案した. 「参考文献」

- [1] H. Fujiwara, "Logic Testing and Design for Testability," The MIT Press, 1985.
- [2] M. Abramovici, M. A. Breuer, and A. D. Friedman, "Digital systems testing and testable design," IEEE Press, 1995.
- design," IEEE Press, 1995.
 [3] A. Krstic, and K.-T. Cheng, "Delay Fault Testing for VLSI Circuits," Kluwer Academic Publishers, 1998.
- [4] P.C. Maxwell, R.C. Aitken, R. Kollitz, and A. C. Brown, "IDDQ and AC Scan: The War Against Unmodelled Defects," Proc. of IEEE Int. Test Conf., pp.250-258, Oct., 1996.
- [5] T.Hosokawa and H.Fujiwara, "A functional test method for state observable FSMs," IEEE 6th Workshop on RTL and High Level Testing (WRTLT'05), pp.123-130, July 2005.
- [6] T.Hosokawa, R.Inoue, and H.Fujiwara, "Fault Dependent/Independent Test Generation Methods for State Observable FSMs," IEEE 16th Asian Test Symposium (ATS'07), October,

2007.

- [7] T.Hosokawa and K.Yamazaki, "An n-Detection Test Generation Method to Increase Fault Sensitization Coverage", IEICE Trans. Info. and Syst., Vol.J90-D, No. 6, pp. 1474-1482, June.2007 in Japanese.
- [8] S.Kajiwara, K.Ishida, K.Miyase, "Average Power Reduction in Scan Testing by Test Vector Modification", IEICE Trans. Info. and Syst., Vol.E85-D, No. 10, pp. 1483-1489, Oct.2002.
- [9] S.Ohtake, H.Wada, T.Masuzawa and H.Fujiwara, " A non-scan DFT method at register-transfer level to achieve complete fault efficiency," IEEE Proc. Asian South Pacific Design Automation Conference, pp.599-604, 2000.
- [10] S.Yang, "Logic synthesis and optimization benchmarks user guide," Technical Report 1991-IWLS-UG-Saeyang, Microelectronics Center of North Carolina, 1999.

表1 1パターンテストの実験結果

	1a									1b								
Circuit	SFC(%)	BFC(%)	PFC(%)	TFC(%)	TL	W1STC (%)	W2STC (%)	FSC (%)	CPUtime (sec)	SFC(%)	BFC(%)	PFC(%)	TFC(%)	TL	W1STC (%)	W2STC (%)	FSC (%)	CPUtime (sec)
ex1	100.00	100.00	81.39	89.86	29997	100.00	72.82	96.75	34.60	100.00	95.43	52.39	81.49	145	2.71	2.24	94.99	0.08
planet	100.00	100.00	89.23	88.09	12299	100.00	73.31	97.69	1.31	100.00	97.53	67.56	79.13	243	5.28	3.79	97.69	0.01
s1	100.00	100.00	61.82	83.80	9012	100.00	73.94	97.05	3.85	100.00	94.55	38.18	69.64	154	4.42	3.72	95.54	0.07
s208	100.00	100.00	100.00	75.98	30943	100.00	74.51	94.10	89.42	100.00	95.47	71.62	66.54	103	9.28	5.07	92.99	0.20
s298	100.00	100.00	46.53	82.89	10528	100.00	37.43	99.23	87.10	100.00	97.95	46.02	82.86	1221	51.80	27.04	95.42	3.53
s386	100.00	100.00	83.17	79.67	6066	100.00	80.06	95.98	4.62	100.00	95.93	55.02	71.97	87	15.52	11.68	95.42	0.02
s420	100.00	100.00	97.40	73.81	29890	100.00	31.70	94.98	60.80	100.00	95.60	71.43	65.48	114	3.16	2.92	94.15	0.18
styr	100.00	100.00	61.47	86.61	42805	100.00	71.51	97.34	100.27	100.00	95.55	19.24	54.16	207	6.58	4.35	95.19	0.23
average	100.00	100.00	77.63	82.59	21442.50	100.00	64.41	96.64	47.75	100.00	96.00	52.68	71.41	284.25	12.34	7.60	95.17	0.54

表2 本手法(m=1)の実験結果

Circuit		本手法 (m = 1)														
	SFC(%)	BFC(%)	PFC(%)	TFC(%)	TL	W1STC (%)	W2STC (%)	FSC (%)	CPUtime (sec)							
ex1	100.00	95.37	53.74	84.18	112	14.58	13.56	95.22	0.48							
planet	100.00	97.95	73.15	83.75	227	28.30	27.09	97.92	0.08							
s1	100.00	95.45	57.20	84.43	149	12.15	14.05	95.76	0.31							
s208	100.00	96.32	81.08	72.05	113	37.11	33.45	93.10	16.61							
s298	100.00	97.91	65.49	91.31	1247	37.10	44.30	95.65	513.65							
s386	100.00	95.85	67.96	78.52	85	25.86	27.60	95.50	0.17							
s420	100.00	97.20	83.12	71.03	122	40.00	32.28	94.15	4.99							
styr	100.00	95.76	42.62	82.22	181	16.78	16.17	94.99	1.64							
average	100.00	96.48	65.55	80.94	279.50	26.49	26.06	95.29	67.24							

表3 本手法(テスト長制約)の実験結果

Circuit	本手法(TL = 300)									本手法(TL = 500)								
	SFC(%)	BFC(%)	PFC(%)	TFC(%)	TL	W1STC (%)	W2STC (%)	FSC (%)	CPUtime (sec)	SFC(%)	BFC(%)	PFC(%)	TFC(%)	TL	W1STC (%)	W2STC (%)	FSC (%)	CPUtime (sec)
ex1	100.00	97.74	66.74	87.02	300	63.05	53.09	96.20	1.67	100.00	98.43	76.51	89.48	500	91.86	75.12	96.51	3.16
planet	100.00	98.27	75.57	85.69	300	42.21	40.45	97.99	0.11	100.00	99.21	82.82	87.30	500	68.82	63.95	98.21	0.17
s1	100.00	97.04	65.93	86.61	300	45.30	43.76	96.28	0.76	100.00	98.18	74.95	88.50	500	71.27	65.94	96.45	1.37
s208	100.00	99.15	86.49	73.23	300	71.13	62.86	93.81	32.53	100.00	99.25	87.84	73.23	500	86.60	78.43	94.00	70.26
s298*	100.00	97.91	65.49	91.31	1247	37.10	44.30	95.65	513.65	100.00	97.91	65.49	91.31	1247	37.10	44.30	95.65	513.65
s386	100.00	98.20	85.11	83.44	300	88.51	77.86	95.79	0.47	100.00	99.00	87.06	84.10	500	100.00	88.48	95.89	2.09
s420	100.00	98.40	92.21	73.02	300	69.47	58.60	94.78	9.18	100.00	98.90	93.51	73.81	500	87.37	77.66	94.78	19.61
styr	100.00	96.56	47.72	85.80	300	35.83	31.31	95.57	2.60	100.00	97.37	53.29	87.24	500	67.80	53.34	96.66	4.54
average	100.00	97.91	74.25	82.12	300.00	59.36	52.56	95.77	6.76	100.00	98.62	79.43	83.38	500.00	81.96	71.85	96.07	14.46