光学活性ルテニウム()錯体の異性化 および交換反応

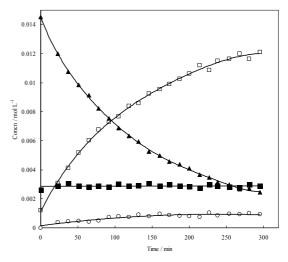
日大生産工(院) 高橋 勇統 日大生産工 津野 孝

1. 緒言

金属核が光学活性となる三つ脚ピアノ 椅子型有機金属錯体[nⁿ-C_nH_nMLL'X]の単 座配位子X が溶液中で解離し生成する不 飽和16電子錯体[ŋⁿ-C_nH_nMLL']⁺の立体化 学は,極めて重要である。もとの錯体の 立体化学を保持した場合,不飽和錯体は 四面体構造となり金属核の不斉が保た れ、不斉触媒として期待される。ルテニ ウム,ロジウムを金属核とする光学活性 ピアノ椅子型有機金属錯体は,多くの不 斉触媒反応が報告されている。演者らは, メチレン鎖で繋がったP-P'二座配位子を 有する[η⁵-CpRu(P-P')X]は , メチレン鎖が 増えることにより不飽和錯体 $[\eta^5$ -CpRu(P-P')|*の四面体構造と平面構造とのエネル ギー差が小さくなるものと予想してい る。今回,光学活性ルテニウム()錯体 $(R_{Ru},R_C)/(S_{Ru},R_C)$ -[η^5 -CpRu(Prophos)Cl]を用 いて, CDCl₃/メタノール系中における異 性化およびCl/I交換反応における動力学 的解析を行った。

2. 実験

 (R_{Ru},R_C) -/ (S_{Ru},R_C) -[η^5 -RuCp(Prophos)Cl] の合成:文献 2 に従い合成した。


 (R_{Ru},R_C) -/ (S_{Ru},R_C) -[η^5 -RuCp(Prophos)Cl] の異性化および交換反応速度:異性化反応速度は,Bruker社製 Avance-400装置を用いた 1 H-NMRスペクトルのCp水素の積分強度より定量し決定した。

Cl/I置換反応は,[CpRu(Prophos)Cl] (ca. mmol)と[Bu₄N]I (ca. mmol)を5 mmφ N MRチューブ中に移し,CDCl₃/CD₃OD(9:1 ν/ν , 0.4 mL)に溶解した。溶解直後に,プローブ内を恒温(293-323 K)に調整した

前述のNMR装置を用い, 1 H-NMR測定した。 [η^5 -RuCp(Prophos)Cl] と [η^5 -RuCp(Prophos)I] の Cp水素の積分強度より定量し,速度定数kを決定した。得られたkと測定温度から,活性化エネルギーEa,頻度因子A,活性化パラメータ ΔH^{\ddagger} , ΔS^{\ddagger} , ΔG^{\ddagger} をそれぞれ求めた。

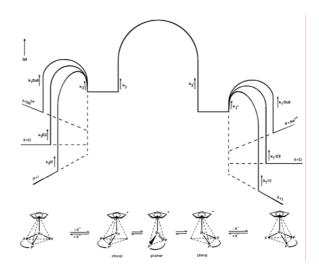
3 結果・考察

 $(R_{\mathrm{Ru}},R_{\mathrm{C}})$ -/ $(S_{\mathrm{Ru}},R_{\mathrm{C}})$ -[η^{5} -RuCp(Prophos)Cl]の300 KにおけるCl/I交換反応の異性化反応速度の経

Fig. 1. Cl/I exchange reaction in (R_{Ru},R_C) - (S_{Ru},R_C) -[CpRu(Prophos)Cl] 85:15 (/ ; 18.4 mmol L⁻¹) with $[Bu_4N]I$ (0.25 mol L⁻¹) in CDCl₃/CH₃OH (9:1, v/v) at 300 K. The products are (S_{Ru},R_C) -[CpRu(Prophos)I] () and (R_{Ru},R_C) -[CpRu(Prophos)I] ().

時変化をFig. 1に示す。興味深いことに, (S_{Ru},R_C) - $[\eta^5$ -RuCp(Prophos)Cl]の濃度はほとんど変化せず, (R_{Ru},R_C) - $/(S_{Ru},R_C)$ - $[\eta^5$ -RuCp(Prophos)I]が増加していくことが明らかとなった。これは, (S_{Ru},R_C) - $[\eta^5$ -RuCp(Prophos)Cl]の塩化物イオンの解離過程が極めて遅いことを示唆している。この結果より, (R_{Ru},R_C) - $[\eta^5$ -RuCp(Prophos)Cl]の減少速度は,塩化物イオンが解離した (R_{Ru},R_C) - $[\eta^5$ -RuCp(Prophos)I]*から (R_{Ru},R_C) - $[\eta^5$ -RuCp(Prophos)I]*を生成

Isomerization and exchange reaction of the optically active ruthenium (II) complexes


Takemoto TAKAHASHI and Takashi TSUNO

する k_2 と k_3 の和に相当する。これらの速度定数より,300 Kにおける k_3/k_2 は0.08と求まり,かなり k_3 の過程のエネルギー障壁が k_2 のものよりもかなり高いことが示唆された。300-323 Kの温度範囲における結果をTable 1に示す。この交換反応において活性化エントロピーは,負の値として求められた。これは,塩化物が解離し $[\eta^5$ -RuCp(Prophos)] $^+$ と塩化物イオンを生成するが,これらはイオンであるため,メタノールによる溶媒を受け,負値となる。

Table 1. Kinetics of the disappearance of (R_{Ru},R_C) -[CpRu(Prophos)Cl] and (S_{Ru},R_C) -[CpRu(Prophos)Cl] in the Cl/I exchange reactions with [Bu₄N]I in CDCl₃/CH₃OH $(9:1, \nu/\nu)$ and activation parameters.

Reaction	Additive	Temp/K	k ₁ or k ₁ ,/min ⁻¹	τ _{1/2} /min ⁻¹	k3/k2
		300	7.2 x 10 ⁻³	96	0.08
(R_{Ru},R_{C}) -[CpRu(Prophos)CI]		308	1.5 x 10 ⁻²	46	0.06
(S_{Ru},R_C) -[CpRu(Prophos)I]	[Bu ₄ N]I	313	2.7 x 10 ⁻²	26	0.04
		323	5.4 x 10 ⁻²	13	0.11
Activation energy $E_a = 71 \text{ kJ mol}$					
Frequency factor $A = 2.0 \times 10^{10} \text{ r}$					
Activation enthalpy ΔH [‡] (300 K)					
Activation entropy ΔS^{\ddagger} (300 K) =					
Gibbs free energy ΔG^{\ddagger} (300 K) =	OC 1-T F				
Gibbs free energy AG (500 K) -	96 KJ MOI				
Olbos nee energy 20 (300 K) =	96 KJ 11101	300	6.2 x 10 ⁻⁴	1120	
	96 KJ MOI		6.2 x 10 ⁻⁴ 1.3 x 10 ⁻³	1120 530	
(S _{Ru} ,R _C)-[CpRu(Prophos)Cl]		300			
	96 KJ mol	300 308	1.3 x 10 ⁻³	530	
(S _{Ru} ,R _C)-[CpRu(Prophos)Cl]	[Bu ₄ N]I	300 308 313	1.3 x 10 ⁻³ 3.1 x 10 ⁻³	530 220	
(S_{Ru}, R_C) -[CpRu(Prophos)Cl] (R_{Ru}, R_C) -[CpRu(Prophos)I] Activation energy $E_a = 91$ kJ mol	[Bu ₄ N]I	300 308 313	1.3 x 10 ⁻³ 3.1 x 10 ⁻³	530 220	
$(S_{Rus}R_c)$ -[CpRu(Prophos)Cl] $(R_{Rus}R_c)$ -[CpRu(Prophos)I] Activation energy $E_a = 91$ kJ mot Frequency factor $A = 3.5 \times 10^{12}$ r	[Bu ₄ N]I 1 nin ⁻¹	300 308 313 323	1.3 x 10 ⁻³ 3.1 x 10 ⁻³	530 220	
(S_{Ru},R_C) -[CpRu(Prophos)Cl] (R_{Ru},R_C) -[CpRu(Prophos)I]	[Bu ₄ N]I 1 nin ⁻¹ = 88 kJ mo	300 308 313 323	1.3 x 10 ⁻³ 3.1 x 10 ⁻³	530 220	

300-323 Kにおける (R_{Ru},R_{C}) -/ (S_{Ru},R_{C}) - $[\eta^{5}$ -RuCp(Prophos)Cl]のジアステレオマー間の異 性化反応では定常状態の平行定数より,各異 性化反応速度定数が求められ, Table 2中に それらの結果を示す。 (R_{Ru},R_C) -[η^5 -RuCp(Prophos)Cl]過剰, (S_{Ru},R_C) -[η^5 -RuCp(Prophos)Cl] 過剰の異性化に対する速度定数は,ほぼ同様 な値を示した。また,この反応系に[Bu4N]I を過剰量加えた場合の異性化反応速度は,何 れも反応速度が低下した。この結果は,この 異性化反応に対する律速段階が, $[\eta^5$ -RuCp Prophos)Cl]の塩化物イオンの解離過程であ ることを示唆している。即ち求めた活性化パ ラメータは,解離反応に関するもとなる。こ のように (R_{Ru},R_C) - (S_{Ru},R_C) - $[\eta^5$ -RuCp(Prophos)Cl]の異性化および交換反応のエネルギ -座標は, Scheme 1のように表せる。

Scheme 1. Energy diagram for the epimerization of the compounds [CpRu(Prophos)Cl]: Prophos= (*R*)-Ph₂PC H(Me)CH₂PPh₂.

Table 2. Kinetics^{a)} of the epimerization of enriched samples of $(R_{Ru},R_C)/(S_{Ru},R_C)$ -[CpRu(Prophos)Cl] in CDCl₃/CD₃OD (9:1, v/v) and activation parameters.

Starting ratio	Temp.	equilibrium ratio	K	k_{ep}	$\tau_{1/2}$	k	k	
(S_{Ru},R_C) : (R_{Ru},R_C)) /K	(S_{Ru},R_C) : (R_{Ru},R_C)		/min ⁻¹	/h	/min ⁻¹	/min ⁻¹	
Act. param.								
14.3:85.7	293	86.0:14.0	61	3 3 x 10 ⁻⁴	35.0	2 8 x 10 ⁻⁴	5.4 x 10 ⁻⁵	
5.8:94.2	300	85.0:15.0	5.7	5.0×10^{-4}		4.8×10^{-4}	8.8 x 10 ⁻⁵	
96.3: 3.7	300	84.0:16.0	5.3	3.8×10^{-4}		3.1×10^{-4}	7.2 x 10 ⁻⁵	
50.0:50.0		84.6:15.4	5.5	6.2 x 10 ⁻⁵	187	5.2 x 10 ⁻⁵	1.2 x 10 ⁻⁵	
11.9:88.1	308	85.6:14.4	6.0	1.2 x 10 ⁻³	9.63	1.0×10^{-3}	2.0×10^{-4}	
50.0:50.0		83.6:16.4	5.1	1.7×10^{-4}	74.1	1.4×10^{-4}	3.0×10^{-5}	
27.2:62.8	313	84.4:15.6	5.4	2.4 x 10 ⁻³	4.81	2.1 x 10 ⁻³	3.2×10^{-4}	
50.0:50.0		82.8:17.2	4.8	3.5 x 10 ⁻⁴	32.6	2.9 x 10 ⁻⁴	6.0 x 10 ⁻⁵	
12.6:87.4	323	81.2:18.8	4.3	8.1 x 10 ⁻³	1.43	6.2 x 10 ⁻³	1.9 x 10 ⁻³	
95.0: 5.0	323	83.4:16.6	5.0	7.6 x 10 ⁻³	1.52	6.1 x 10 ⁻³	1.5 x 10 ⁻³	
50.0:50.0		81.1:18.9	4.3	6.2 x 10 ⁻⁴	18.8	5.3 x 10 ⁻⁴	9.0 x 10 ⁻⁵	
Activation energy E _a = 88 kJ mol ⁻¹			$E_a = 95 \text{ kJ mol}^{-1}$					
Frequency factor A = $9.7 \times 10^{11} \text{ min}^{-1}$			$A = 3.7 \times 10^{12} \text{min}^{-1}$					
Activation enthalpy ΔH^{\ddagger} (300 K) = 86 kJ mol ⁻¹			ΔH^{\ddagger} (300 K) = 93 kJ mol ⁻¹					
Activation entropy ΔS^{\ddagger} (300 K) = -58 J mol ⁻¹ K ⁻¹			ΔS^{\ddagger} (300 K) = -47 J mo Γ^{1} K ⁻¹					
Gibbs free energy ΔG^{\ddagger} (300 K) = 103 kJ mol ⁻¹				ΔG^{\ddagger} (300 K) = 107 kJ mol ⁻¹				

a) Measurements were performed using the Cp signals of the ^{1}H NMR spectra. b) Added excess [Bu₄N]Cl.

本発表会において異性化および交換反応 につて詳細な結果について発表する.

4 参考文献

1) Morandini, F.; consiglio, G.; Straub, B.; Ciani, G.; Sironi, A. *J. Chem. Soc., Dalton Trans.* **1983**, 2293.