銀表面へのトリチオシアヌル酸自己組織化膜の吸着構造

一赤外およびラマン分光法による研究-

日大生産工(院) 〇石塚 芽具美 日大生産工 陶 究・日秋 俊彦・小森谷 友絵・神野 英毅・大坂 直樹

1 緒言

表面や界面における分子の反応、吸着や移動 などの挙動に関する知見は、基礎的な研究から 工業的な応用まで幅広く需要がある。そのため に、薄膜形成における分子配向や水素結合、表 面金属との結合様式などを調べる基礎的な研 究は将来的にも重要であり、単分子膜、さらに は積層された多層膜まで幅広く研究が行われ ている。分子の構造においては、化学反応はも ちろん、分子間の弱い結合も、構成原子の結合 角や結合距離の変化に鋭敏に影響する。その構 造変化を解析する手法の一つである振動分光 法は、比較的非破壊であり高分解能な手法であ る。さらに、その表面や界面における分子のモ デルの検討として、分子軌道法や密度汎関数法 などを用いることで、多くの分子配向や構造変 化の詳細が明らかとなっている[1]。

トリチオシアヌル酸(以下 TTCA)は、分子内 に3つのチオール基を有し、分子内プロトン移 動により環構造の窒素にプロトンが結合した 互変異性体(Fig.1)がある[2]。この分子は、 ゴム加硫剤や含ハロゲンポリマー用架橋剤、金 属とポリマーの接着用架橋剤、そして銅害防止 剤に使われている。3つのチオール基全てが金 属表面に吸着すると接着用架橋剤としては機

Fig.1 Optimized structures of TTCA molecule.

能しないため、金属表面に吸着する構造を明ら かにすることで、チオール基が表面に突き出し た薄膜が形成されるはずである。チオール基が 表面に並ぶことで重金属イオンの吸着や有機 分子上に金属原子の単原子膜を作成できる可 能性がある。それらの可能性を探る上でも金属 表面に吸着した TTCA の吸着構造と配向に関 する知見を得ることが必要である。また、互変 異性体のどの構造を表面でとっているかも興 味がもたれる。

2 実験方法および計算方法

【実験】

銅基板の片面に厚さ 1000 Åの銀を蒸着し、 銀蒸着膜を作製した。この銀蒸着基板を、 TTCAのメタノール溶液(1.0 mM)に浸たし、 TTCA吸着薄膜を作製した。その後、この薄膜

Adsorption Structures of Trithiocyanuric Acid Self-Assembled Monolayers on Silver Surfaces

— Study of Infrared and Raman Spectroscopy –

Megumi ISHITSUKA, Kiwamu SUE, Toshihiko HIAKI, Tomoe KOMORIYA, Hideki KOHNO and Naoki OSAKA をメタノールを用い洗浄して単分子吸着膜を 得た。さらに、この薄膜の赤外反射吸収(IRAS) スペクトルを測定した。バックグラウンドには 銀蒸着基板を使用した。また、TTCAのKBr 錠剤中のスペクトルも測定した。

【計算】

非経験的分子軌道法による計算は次のよう に行った。構造最適化および基準振動数は、プ ログラムとして GAUSSIAN03 を使用し、計算 手法は密度汎関数 (DFT) 法の BLYP および B3LYP 法で、基底関数には 6-31G*を、金属に は ECP を用いて計算した。手法や関数につい ては、様々な種類があるが最も一般的に用いら れるものを孤立 TTCA 分子に用い、実験値と の対応で、最適なものを金属錯体モデル計算に 使用した。計算機には、株式会社 HIT (現 HPC) の HPC-P4/GLW を用いた。

3 結果および考察

Fig.2 に、TTCAのKBr錠剤中のスペクトル と厚さ1000 Å銀表面上に作製したTTCA単分 子膜のIRAS スペクトルを示した。このKBr 錠剤中のTTCAのスペクトルから、TTCA分子 はFig.1 (a)の構造をとっていることが示唆さ れた。また、IRASスペクトルから、TTCA分 子はAg表面上でFig.1 (b)の構造をとってい ることが示唆された。このスペクトル変化につ いて、銀TTCA 錯体による吸着モデルの計算 を進めている。

孤立の状態の TTCA 分子について構造最適 化と基準振動数計算を行ったところ、Fig.1 に おける 2 つの構造が安定であり、(b)よりも(a) の構造の方が安定であると計算された。

TTCA 銀配位モデルについても計算を行った。TTCA m 分子に銀 n 原子が配位したモデル を m:n モデルと呼ぶ。1 つの SH 基の H が Ag に置換された 1:1 モデルについて計算した結 果、B3LYP 法で最適化構造が得られ、CSAg の 角度が 84.2 °と計算された(Fig.3)。3 つの SH 基の H が Ag に変わった 1:3 モデルについ ては最適化構造が得られていないが、今後も検 討を進める。銀表面上における TTCA 分子の 金属錯体モデル計算については、今後さらに進 めていく。

- Fig.2 Infrared Absorption Spectra of TTCA.
 - (a) TTCA in KBr.
 - (b) Infrared Reflection Absorption Spectera of TTCA on Evaporated Silver Film.

Fig.3 Optimized structure of TTCA 1:1 model.

「参考文献」

- Osaka N., Journal of Physical Chemistry, 100, (1996), 17606
- (2) Kucharski M., Journal of Applied Polymer Science, 76(4), (2000), 439.