硫黄酸化細菌を想定した酸によるコンクリート腐食現象の解析

日大生産工(院)〇杉浦広人日大生産工大木宜章日大生産工(院)木科大介ソフトハウス(株)藤本憲司

1. はじめに

近年、初期に整備された下水道管が耐用年数に 達し、都市部では管路の再構築という新たな課題 に取り組んでいる。

その一方で、耐用年数である50年に満たない時 期において、コンクリート下水道管の早期老朽化 が原因で道路の陥没事故などが起きている。この 老朽化は

①コンクリートの中性化による劣化

②下水中に含まれる有機酸による腐食

③下水道管内に生息する硫黄酸化細菌が硫化水素 を酸化することによって生成する硫酸による腐食

などによるものと考えられ、さらにこれらの条件 の相乗効果によって引き起こされる。

本研究では、老朽化の原因の中でも最も深刻な 『硫黄酸化細菌が生成する硫酸によるコンクリー トの腐食』に着目し、レーザー変位計を用い、初 期段階における硫黄酸化細菌の硫酸を想定した硫 酸単体での腐食の進行を数値的に解析した。

2. 実験概要

施工時のコンクリートは高アルカリであるた め、硫黄酸化細菌の生育には適さない。しかし、 中性化が進行し表面が至適pHになると、硫黄酸化 細菌の増殖により腐食が進行する。これと同様の 条件にするため、コンクリート供試体(形状40mm ×40mm×40mm)はCO₂にて一年間中性化(供試体表 面pH8.8)させたものを用い、pH2.0に調整した硫 酸水溶液に浸漬し、パラフィルムにて密閉した状 態で25℃の恒温装置内で実験を行った。なお、 硫酸水溶液のpHについては、腐食されたコンクリートがpH1.0~3.0であることから、pH2.0に調整したもので実験を行った。

測定項目は硫酸水溶液のpH、供試体重量、レー ザー変位計による供試体の形状変化の測定および 光学顕微鏡による視的観察を2日間毎に行った。レ ーザー変位計は広域の測定に適したLK-Gと細部の 測定に適したLTを用いて測定を行い、今回はLTの データを中心に解析を行った。

3. 実験結果

図-1に硫酸水溶液のpHの変化を示す。

初期の段階においてコンクリート中のアルカリ分の溶出に伴うpHの急激な上昇が見られ、6日目以降 も6日毎に急激なpHの上昇がみられるが、連続して pHが上昇することはなくなり、コンクリート表面 のアルカリ分の溶出は減少し、pHも低下している と考えられる。

The Analysis of the Concrete Corrosion Phenomenon by the Acid that Assumed Sulfur Oxidation Bacteria

Hiroto SUGIURA, Takaaki OHKI, Daisuke KISHINA, and Kenji FUJIMOTO

図-2に重量減少率の推移を示す。

実験開始2日目に重量の微量増加が見られた。これ はコンクリートの主成分である水酸化カルシウム

(Ca(0H)₂)等と硫酸(H₂SO₄)の反応によって生成 された、二水石膏(CaSO₄・2H₂O)および膨張性物 質の、エトリンガイト(3CaO・Al₂O₃・3CaSO₄・32H₂O) 等の影響であると考えられる。また、エトリンガ イトは非常に脆く、容易に崩壊する物質であるた め、重量の増加後に大幅な減少がみられるのはこ のためと考えられる。2日目以降は微量の増加と大 幅な減少を繰り返しながら、徐々に減少する結果 となった。

写真-1に顕微鏡写真(×40)を示す。 供試体表面の0日目、12日目、24日目のもので、す べて同じ箇所を撮影したものである。0日目はクラ ックが見られないが、12日目では多くのクラック が見られ、左下の部分には表面が剥がれ落ちてい る様子が見られる。実際には、この時点で表面の 変色も起こっている。図-1の結果より12日目では pHの上昇が見られ、供試体表面から大量のアルカ リ分が溶出した。このことにより供試体表面が硫 酸の影響を受けやすい状態となり、表層部分の脱 落につながったと言える。24日目には細骨材もみ られ、表面がより多く剥がれ落ちていることがわ かる。

図-3に供試体の表面画像の経日変化を示す。 画像はレーザー変位計により測定した供試体上面 の一部で、測定範囲は3mm×3mmで、写真-1と同 じ場所を測定したものである。

0日目は顕微鏡写真と同じく表面は滑らかな状態 で、12日目ではクラックと表層が脱落した箇所が 現れている。LTの画像では深い場所になるほど色 が暗くなるため、顕微鏡写真では判断しにくかっ たクラックの深さも確認できる。24日目では硫酸 の影響によるクラックが多く発生した状態となり、 表面の腐食が進行していることがわかる。LT画像 において0日目から存在するクラックを【クラック A】とする。日数の経過と共に徐々に拡大し、そ の右下には新たなクラックが見られる。写真-1 と比較して見ると、24日目は全体的に表面が剥が れ始めていることがわかる。

写真-1 供試体上面の経日変化

図-3 LT画像

図-4 クラックA断面図

図-4にLTでの数値解析による供試体表面の形 状を示す。

このグラフは図-3におけるライン部の形状を示 したもので、特徴的であるクラックAの部分を中 心に、断面形状をグラフ化したものである。0日目 では深さ100µmに満たないものが、12日目で250mm 近くに達し、24日目においては300µmを超える深 さとなっている。クラックA以外の箇所において も、硫酸の影響によって生じた微細なクラックを 中心として腐食が拡大しているといえる。

最後に12日目、20日目に表層の脱落によって発 生した巨大なクラックの断面図を示す。12日目の ものを【クラックB】、20日目のものを【クラッ クC】とし、それぞれ図-5、図-6に示す。 24日目のクラックAと比較するため、B、Cどち らも24日目のものをグラフ化した。

B、CどちらもA以上の深さまで腐食が進行して いる。表層部分の脱落により深いクラックが一瞬 で発生したが、発生時から24日目まではクラック の拡大がみられない。これは、実験開始時からク ラック内部に硫酸が浸透しているクラックAとは 異なり、B、Cは脱落が起こる直前までは内部に アルカリ分が残留していたと考えられる。そのた め、腐食の進行が他の箇所に比べて遅くなったの ではないかと考えられる。

しかし、26日目以降は表層の脱落が一挙に進み、 LTでは測定不可となってしまったことから、この 期間に硫酸がクラックから内部に浸透し、腐食が 内部から進行したものと考えられる。

4. まとめ

重量減少率の結果より、硫酸によるコンクー ト腐食は初期段階において、エトリンガイト、二 水石膏などの影響による膨張現象により、重量の 増加、その後は崩壊による減少が起き、この増加 と減少を繰り返しながら、全体として徐々に減少 することが確認された。pHの変化からもコンクリ ート中のアルカリ分の消失が腐食に関係している といえる。断面形状の推移からは、クラックは横 方向にはあまり拡大せず、主に縦方向に拡大して いることが分かる。この縦方向に拡大したクラッ クから浸透した硫酸が内部からコンクリートと反 応し、生成されたエトリンガイト等の結晶物の膨 張と崩壊により、コンクリートの内部がポーラス な状態となり、その部分に硫酸がさらに浸透し、 内部からの腐食により表層部分の脱落が起こる。

以上のことから、硫酸によるコンクリート腐食 は、表面の腐食によって発生したクラックから、 硫酸が浸透し、内部からも同時に進行するもので あり、その結果、表層部分の脱落が起こり、徐々 にコンクリートの表面が減少し、腐食が進行して 行くものと考えられる。

謝辞 本研究は文部科学省学術フロンティア推 進事業による私学助成を得て行われた。ここに記 して誠意を表する。