スラグ流のドリフト速度について

日大生産工(院)後藤 吉範 日大生産工(院)山田 泰正 日大生産工 遠藤 茂勝

1.はじめに

近年、湖沼や海水域など水面域で発生する アオコや赤潮を回収し管路内で発生するスラ グ流で輸送することが試みられている。スラ グ流とは、液相と気相が交互に流れる間欠流 であり、また、気相と液相の分離が容易であ り粘性摩擦の低減が計れることから、低圧力 で高速輸送が可能となる。スラグ流は流動す る時初期圧力が高く、それを利用しアオコや 赤潮の細胞に圧力をかけることで細胞そのも のを破砕させながら、輸送することへの応用 が期待される。さらに、船を安定させるため 積み込まれたバラスト水をオゾンによって殺 菌するためにスラグ流が応用できる。

しかし、従来の研究において冷却装置など 短距離小口径などといった研究が多く、アオ コや赤潮といった陸地から遠く離れた場所か らの長距離輸送に適用できる研究において未 解明の部分がある他、スラグ流は間欠流のた め液相と気相の界面で複雑な流動特性を持っ ている。そこで本研究では、空気の膨張の効 果とスラグ流速度の検討をするために、みか け上の速度である容積流束を用いて検討する こととした。

2.実験概要及び実験装置

本研究で使用した実験装置は Fig-1 に示す ように管内径 d=38mm の透明なビニールパイ プを用い、気相である空気と液相である水を 同時かつ連続的に供給することによりスラグ 流を発生させた。実験条件は Table-1 に示した 30 条件と管路全長 70m, 150m, 310m, 420m, 620m の 5 条件で行った。測定内容は、スラグ 流速度 $V_1 \sim V_6$ の 6 地点、圧力は圧力計を用

Fig-1 実験装置概要

Table-1 実験条件

Qa	Qw	Qa	Qw	Qa	Qw
(NI/min)	(I/min)	(NI/min)	(I/min)	(NI/min)	(I/min)
20	12.0	60.0	12.0	140.0	12.0
	20.0		20.0		20.0
	28.0		28.0		28.0
	36.0		36.0		36.0
	44.0		44.0		44.0
	52.0		52.0		52.0
40.0	12.0	100.0	12.0	180.0	12.0
	20.0		20.0		20.0
	28.0		28.0		28.0
	36.0		36.0		36.0
	44.0		44.0		44.0
	52.0		52.0		52.0

70mのみQa=20(NI/min)を使用

Study on Drift Velocity of Two Phase Slug Flow Yoshinori GOTO, Yasumasa YAMADA and Shigekatsu ENDO いた P₀~P₆の 7 地点で測定をした。スラグ流 速度は Fig-2 に示した光透過量測定装置を用 いて測定した。これは、長さ 1.50m のアクリ ル板を箱状に組み合わせ、赤色 LED と受光セ ンサーをアクリル板の側面に 1m の間隔に取 り付けた物を二ヵ所に配置し、光の透過量を 計測した。これらから、液相が通過した時間 で、スラグ流速度、気液相長の長さを算出し た。

3.実験結果および考察

3.1 容積流束とスラグ流速度について

これまでの研究の結果より、スラグ流速度 は流動距離が進むと気相の膨張により、速く なっていることが分かっている。そこで、ス ラグ流速度と気相の膨張との関係について、 容積流束を用いて検討する。容積流束は、気 液流量から算出され以下のように定義される。

$$J_G = \frac{Qa}{A}, J_L = \frac{Q_W}{A} \qquad J_T = J_G + J_L \tag{1}$$

また、Dukler and Hubbard はスラグ流速度 V_s と容積流束について次のように定義している。

$$Vs = C_2 J_T \tag{2}$$

と定義されている。

ここで、C₂:係数 J_T:容積流束

 C_2 の値はGregoryにより C_2 =1.35と一定に なることを示している。しかし、Zuberらは水 平管における静水圧を考慮した、ドリフト速 度 V_d を考慮されると提案されている。また、 Aziz らの実験によりドリフト速度 V_d の存在 が確認されたことから以下の式で示される。

$$Vs = C_2 J_T + V_d \tag{3}$$

ここで、V_d:ドリフト速度

また、 C_2 の値は Collins らの乱流域において $C_2 = 1.2$ と示している。実験結果から、容積流 束 J_{T0} とスラグ流速度 V_s を示したグラフが Fig-3 である。横軸にスラグ発生地点の 0m 地 点の容積流束 J_{T0}、縦軸にスラグ流速度 V_s を とり、すべての条件について示してある。こ の結果を見ると、地点ごとに直線的な傾きを 示し、また流動距離が進むにつれて傾きが 徐々に増加していることが確認できる。また、 C_2 の値は出口付近に近づくにつれて値が小さ

Fig-3 容積流束とスラグ流速度

Fig-4 容積流束とスラグ流速度

くなっていき一定ではないことが確認できる。 次に、気相の膨張の効果を検討するために 各地点の容積流束について検討を行った。横 軸に各地点における圧力を考慮した容積流束 J_{Tn}、縦軸にスラグ流速度 V_sをとり、管路長が 70m の図を示したのが Fig-4 である。これを見 ると、ほぼ一直線上にのっており C₂の値は約 1.2 になっていることが確認できる。次に、同 じ関係を管路長が 620m の場合を示したもの

が Fig-5 である。これを見ると、管路長の長い 方では C2の値は一定ではないことが確認でき る。また、管路長の短い時の C_2 の値と管路長 の長い時の出口付近の C_2 の値は Collins の C_2 = 1.2 の値と等しくなっていることが確認で きる。また、入口付近に近づくにつれて切片 であるドリフト速度 V_d が増加していること が確認できる。

ドリフト速度 V_dは Benjamin によって重力 の作用によって流れる速度と定義され、 Zukoski によって、ドリフト速度 V_dは実験的 に次式で表わせると示している。

$$V_d = 0.542 \sqrt{gd} \tag{4}$$

ここで、g:重力加速度 d:管内径 この式は短距離間における実験から与えられ た式である。しかし、長距離管路におけるド リフト速度 V_dは明確にはされていないため、 また V_dの式の 0.542 はどのように求められる のか検討することとした。

3.2 ドリフト速度

ドリフト速度 V_dとは、流体中における重力 の作用によって流れる速度であるが Fig-6 に 示す。片一方が閉じられた管路において、静 止流体が自然流下している状態のときの液相 の速度 V₁がドリフト速度とされている。この 時の、検査面 と において運動量保存則を 適用するとき、 については管路流であり、

については管水路なので次式となる。

$$\rho Q v_1 + P_1 A_1 + \rho g \frac{D}{2} A_1 = \rho Q v_2 + P h_2$$
 (5)

ベルヌーイの定理から検査面 0 と から速 度 V₂ と、検査面 と 0 から圧力 P₁を求める。 また、自由水面において圧力は 0 となるので P₀= P₂=0 となる。及び検査面 0 においては速 度 V₀=0 となるため以下のように求められる。

$$P_{1} = -\frac{1}{2}\rho V_{1}^{2}$$
 (7)

ここで、ρ:水の密度 V₁:速度 先ほど求めた運動量保存則より の外力と

Fig-5 容積流束とスラグ流速度

の外力は同じとなり、検査面の開水路との外力が等しくしなければならないため、静水圧を外力に加える必要がある。の全水圧は満管状態であり、また、の全水圧は開水路の断面となる。における静水圧による力Ph」は、以下の式で表わされることができる。

$$Ph_{1} = \rho gh_{G}A = \rho g \frac{D}{2}A_{1}$$
(8)

ここで、A₁:断面積 また、 における静水圧による力 Ph₂ は、

$$Ph_{2} = \rho g \left[\frac{1}{12\sqrt{(D-h)h}} \left\{ (D-h)h \left(3D^{2} - 4hD + 4h^{2} \right) \right\} - 3D^{2}(D-2h)\sqrt{h(D-h)} \tan^{-1} \left(\sqrt{\frac{h}{D-h}} \right) \right\} \right]$$
(9)

となり運動量式は以下の次式で表わされるこ とができる。

$$\left(\rho v_1^2 + P_1 + \rho g \frac{D}{2}\right) A_1 = \rho v_2^2 A_2 + P h_2 \quad (10)$$

ここで A_1 、 A_2 の断面積を求めていく。断面積 A_1 は検査面 で満管状態であるため、 $\pi D^2/4$ で求められるが、断面積 A_2 の検査面 の場合 では満管ではなくなるため求める式は、以下 の式で表わされることができる。

$$A_{2} = \frac{\pi D^{2}}{4} - \frac{D}{4} \{ D(\pi - \theta) - (D - 2h) \sin(\pi - \theta) \}$$
(11)
(*h*/*D* > 0.5)

また、θは

$$\theta = \cos^{-1} \left(\frac{D - 2h}{D} \right) \tag{12}$$

によって、これらの式をすべてまとめると、 ドリフト速度 V₁ は以下の式によって導きら れる。

$$v_{1} = \sqrt{\frac{2}{A_{1}} \left\{ \left(2gD - 2gh \right) A_{2} + \frac{Ph_{2}}{\rho} \right\} - gD}$$
(13)

この式より、V_d = V₁となることからドリフト 速度 V_dを求めることができる。計算式から求 めた、計算値 V_dと実験値 V_dを比較したもの を Fig-7 に示した。この結果から、計算値と実 験値はほぼ等しいことが分かる。次に、距離 によってドリフト速度 V_d がどのように変化 していくのか表わしたのが Fig-8 である。横軸 に無次元化した流動距離 I/L、縦軸に計算値・ 実験値 V_dを表わしたものである。この結果か ら、距離が長くなるにつれてドリフト速度 V_d が減少していくのが確認できる。ドリフト速 度は圧力に関係していることから、距離が進 むにつれ圧力が低下するためドリフト速度 V_d も減少していると考えられる。

4. まとめ

管路全長が短いと C₂ は各地点一定であり、 管路全長が長くなると C₂の値は変化する。 これは、気相の膨張による影響により C₂の値 にも変化することが考えられる。

従来の研究では C₂ は一定とされていたが 各地点の圧力を考慮した場合、短距離管路で

Fig-7 実験値・計算値 V_d

は、C₂は一定となるが、長距離管路では一定 とはならない。しかし、出口付近において C₂=1.2 とほぼ等しい値となる。

ドリフト速度 V_d も短距離管路においては 一定で、Zukoski の式に一致するが長距離管路 においては、一定値とならない。また、計算 式を用いることによって推算することが可能 となった。

参考文献

- 山田泰正、落合実、遠藤茂勝: 遷移流動を 伴う気液スラグ流における加速損失につ いて、土木学会海岸工学論文集、Vol.53. pp911-915、2006年
- 2)山田泰正、濱田龍寿、小川元、落合実、遠 藤茂勝:気液二相流における管内圧力低下 に伴うスラグ流動について、土木学会海洋 開発論文集、Vol.21.pp897-902、2005 年