走行荷重が作用する RC 床版の CFS 補強効果に関する研究

日大生産工(院) 反田泰人 日大生産工 阿部忠 日大生産工 木田哲量 日大生産工 澤野利章 日鉄コンポジット(株) 斉藤誠

1.はじめに

道路橋鉄筋コンクリート(RC)床版は車両の 大型化や交通量の増加に伴い, ひび割れなど の損傷が報告されている。そこで,RC 床版 に対する研究が行われ, RC 床版は静荷重に 対する耐荷力が確保されていても,走行荷重 が作用した場合に耐荷力が低下することが報 告されている。また,RC床版に対する補修・ 補強に,施工性,工期短縮などの面で利点を 有する炭素繊維シート(CFS)接着工法が用い られ,その施工実績は年々増加している。そ の補強効果は曲げによるたわみや応力度の低 減,コンクリートのひび割れの拘束,疲労寿 命の向上など多くの利点を有する。そこで本 研究では, RC 床版の底面に CFS 補強を施し た供試体を用いて,静荷重実験,走行荷重実 験を行い,最大耐荷力,破壊形状,荷重とた わみ、荷重と鉄筋ひずみおよび荷重と CFS ひ ずみの関係から走行荷重が CFS 補強した RC 床版に及ぼす影響を検証し, CFS の補強効果 を評価する。

2. 供試体作製

2.1 使用材料

供試体のコンクリートには,普通ポルトランドセメントと最大寸法 20mm の粗骨材を使用した。鉄筋は SD295A, D10 を用いた。供試体の力学特性値を表-1 に示す。なお,CFS は高強度カーボンシートを用い,プライマーにはエポキシ樹脂を用いた。CFS の材料特性値を表-2 に示す。

2.2供試体寸法および鉄筋の配置

供試体の支間は 120cm, 全長 147cm の等方性版とし,支持条件は 4 辺単純支持とした。鉄筋は,軸直角方向,軸方向ともに 10cm 間隔に配置する。また,有効高さは,軸直角方向 10.5cm,軸方向 9.5cm とする。供試体寸法および鉄筋配置を図-1 に示す。

3 . CFS 接着補強法

道路橋 RC 床版の補修・補強法を基に, RC 床版供試体の底面に CFS 接着を行う。 本実験では,軸方向および軸直角方向の2方向に貼

表-1 コンクリート・鉄筋の材料特性値

	供試体	コンクリート	鉄筋(SD295A,D10)		
		圧縮強度	降伏強度	引張強度	
		(N/mm^2)	(N/mm^2)	(N/mm^2)	数
_	RC床版	35.0	370	511	200

表-2 CFS の材料特性値

シート名	目付量	設計厚さ	引張強度	ヤング係
	(g/m²)	(mm)	(N/mm²)	数
高強度CFS	202	0.111	4420	235

図-1 供試体寸法および鉄筋配置

り付けした。CFS 接着は次の手順で行う。 供試体の底面をコンクリートサンダーで平滑 に仕上げ,下地処理を行う。 エポキシプラ イマーを塗布含浸させる。 軸直角方向に接 着用含浸樹脂で CFS を接着する。 軸方向に 接着用含浸樹脂で CFS 接着する。以上の方法 により,床版底面を軸方向および軸直角方向 に,幅 40cm の CFS を支点間内に 1 層ずつ貼 り付けした。

4.実験方法

4.1静荷重実験

静荷重実験は,最大曲げ応力が生じる支間

Rehabilitation Effect of RC Slabs with CFS under Running Load

by Yasuto SORIDA

Tadashi ABE, Tetsukazu KIDA, Tosheaki SAWANO, Makoto SAITOH

中央に車輪を載荷させ,静止した状態で荷重を 10.0kN ずつ供試体が破壊するまで増加させる段階荷重実験とする。供試体名称は,無補強 RC 床版を RC-S, CFS 補強 RC 床版を C-S とする。

4.2 走行荷重実験

走行荷重実験は支間中央で車輪を停止した状態で載荷させ,載荷後に走行を開始させて,左右支点方向に走行させ,支間中央に戻るまでを1往復するものである。走行速度は1往復2.4mを18secで走行する22cm/secとし,荷重は,1走行毎に10.0kNずつ増加する段階荷重実験とする。供試体名称は,無補強RC床版をRC-R,CFS補強RC 床版をC-Rとする。

5 . 結果および考察

5.1 実験耐荷力

本実験における実験耐荷力および破壊 モードを表-3に示す。

(1)無補強 RC 床版 無補強 RC 床版に対する静荷重実験の場合は,最大耐荷力の平均が 223.4kN である。

また,走行荷重実験の場合は,平均最 大耐荷力は170.2kNである。静荷重実験 と走行荷重実験における平均最大耐荷力 の比は0.74となり,走行荷重が作用する ことにより26%耐荷力が低下した。

(2)CFS 補強 RC 床版 CFS 補強 RC 床 版の静荷重実験における最大耐荷力の平均が318.1kNとなり 無補強 RC 床版供(RC-S)の平均最大耐荷力に比して,1.42 倍耐荷力は上廻った。

また,走行荷重実験の場合の平均最大耐荷力は237.7kNとなり,無補強RC床版(RC-R)の平均最大耐荷力の平均に比して1.41倍耐荷力の補強効果が見られた。いずれの供試体もRC床版にCFS補強したことにより,最大耐荷力が向上する結果となった。また,静荷重実験と走行荷重実験における平均最大耐荷力比は0.75となり,走行荷重が作用することにより,25%耐荷力が低下した。

5 . 2 破壊状況

本実験における RC 床版の破壊時のひび割れ状況および CFS のはく離状況の一例を**図-2**に示す。なお, CFS のはく離状況はハンマーによる打音法より, 完全はく離している音を大とし, やや低い濁音を中, さらに小さい濁音を小として**図-2**に併記した。

(1)無補強 RC 床版 無補強 RC 床版のひび割れ状況は,図-2 に示すように静荷重が作用

表-3 耐荷力および破壊モード

供試体	最大耐荷力 (kN)	平均最大 耐荷力 (kN)	耐荷力比	破壊モード
RC-S-1	221.3	223.4		押抜きせん断破壊
RC-S-2	225.4			押抜きせん断破壊
RC-R-1	170.0	170.2	0.74	押抜きせん断破壊
RC-R-2	170.4	170.2	0.74	押抜きせん断破壊
C-S-1	315.3	318.1	1.42	押抜きせん断破壊
C-S-2	320.9		1.42	押抜きせん断破壊
C-R-1	235.3	237.7	1.41	押抜きせん断破壊
C-R-2	240.2	431.1	1,41	押抜きせん断破壊

図-2 RC 床版の破壊時のひび割れ状況

および CFS のはく離状況

する場合は、ひび割れは鉄筋の配置間隔 10cm 間隔で発生し、また降伏線方向にもひび割れが発生している。破壊状況は輪荷重の接地面から約 45 度の傾斜角で押抜かれ、引張鉄筋の底面コンクリートはダウエル効果によりはく離している。破壊状態は押抜きせん断破壊である。

次に,走行荷重が作用する場合のひび割れ 状況は,軸直角方向に 10cm 間隔で発生して おり,軸方向にも 10cm ~ 12cm 間隔でひび割 れが発生し,格子状に形成している。このひ び割れ間隔は,軸直角方向および軸方向に配 置した鉄筋間隔とほぼ同じ寸法である。なお, 走行荷重実験の破壊状態ははり状化による押 抜きせん断破壊となった。

(2)CFS 補強 RC 床版 CFS 補強 RC 床版は , 荷重載荷位置から約 45 度の底面に CFS のは く離がみられる。これはコンクリートのダウ エル効果による引張破壊している位置である。 したがって , 無補強 RC 床版のダウエル効果

図-3 荷重とたわみの関係

によりコンクリートがはく離した位置で CFS のはく離が生じている。破壊状態は,荷重載荷位置で押抜きせん断破壊となっている。

次に、走行荷重が作用した場合の破壊状態は、輪荷重が走行中に押抜きせん断破壊との時、CFS は RC 床版の破壊と同時にはく離した。また、静荷重の場合と比較すると、はく離が走行方向に数多くみられた。これは、荷重の走行方向に渡って応力

を受けたためである。また,いずれの供試体 も全面的なはく離やシートの破断は生じない ことから,終局まで CFS の補強効果が発揮さ れたと考えられる。

5.3 荷重とたわみの関係

荷重とたわみの関係を図-3に示す。

(1)無補強R C 床版 無補強RC 床版の静荷 重実験における荷重とたわみの関係は,供試 体RC-S の場合,荷重 50.0kN 付近まで線形的 に増加している。荷重 60.0kN 時のたわみは 5.5 mmであり,その後荷重増加によりたわみ の増加が大きくなり,供試体 RC-S-1 が荷重 235.0kN で 13.7 mm,また,供試体 RC-S-2 は, 荷重 240.0kN で 12.8 mmである。

これに対して,走行荷重実験の場合の供試体 RC-R は荷重 40.0kN 付近までは線形的に増加し,荷重 50.0kN の時のたわみは 0.5mm である。その後の荷重増加で急激なたわみが増加なり,最大たわみは供試体 RC-R-1 は荷重170.0kN で 11.5 mm, RC-R-2 の場合,荷重 170.0kN で 11.5 mmである。

(2)CFS 補強 RC 床版 静荷重における荷重

図-5 荷重と CFS ひずみの関係

とたわみの関係は、供試体 C-S-1,2 は荷重の増加に伴ない穏やかにたわみが増加しており、最大荷重時のたわみは、供試体 C-S-1,2 で 7.26 mm , 6.14 mmとなった。

これに対して,走行荷重実験の場合は,静荷重実験と同様に,荷重の増加に伴い穏やかにたわみが増加しており,最大荷重時のたわみは供試体 C-R-1,2 で 7.67 mm,6.32 mmとなった。ここで,無補強 RC 床版と CFS 補強 RC 床版の最大たわみを比較すると CFS 補強 RC 床版が無補強 RC 床版に比して,静荷重実験では 50%,走行荷重実験では 60% たわみが抑制された。これは,CFS を供試体下面に張り付けたことで,変形に対する高い抑制能力が付与したためであると考えられる。

5.4 荷重と引張鉄筋ひずみの関係

引張鉄筋の荷重とひずみの関係を軸直角 方向は図-4(1),軸方向は図-4(2)に示す。

(1)無補強 RC 床版 図-4 より,無補強 RC 床版に静荷重が作用する場合は,供試体 RC-S-1,2 では荷重 200kN 付近からひずみの増加が著しくなり,終局時のひずみは,それぞれ 63 39×10⁻⁶,7534×10⁻⁶である。走行荷重に対す

る引張鉄筋ひずみは ,供試体 RC-R-1,2 では荷重 150kN 付近まで線形的に増加し , その後の荷重増加によりひずみは急激な増加した。終局時のひずみはそれぞれ 8765×10^{-6} , 10154×10^{-6} である。

次に,軸方向の引張鉄筋ひずみは,静荷重・ 走行荷重場合ともに,軸直角方向とほぼ同様 な増加傾向を示しており,終局時のひずみは 供試体 RC-S-1,2 でそれぞれ 11895 × 10⁻⁶ ,6335 ×10⁻⁶となり,供試体RC-R-1,2 でそれぞれ39 16×10⁻⁶,6283×10⁻⁶である。いずれの供試体 も破壊時には、ひずみが著しく増加している。 (2)CFS 補強 RC 床版 CFS 補強 RC 床版の 引張鉄筋のひずみは,供試体 C-S-1,2 ともに CFS 補強したことにより急激なひずみの増加 が見られない。軸直角方向の引張鉄筋の降伏 荷重は,供試体 C-S-1,2 でそれぞれ 295.0kN, 275.0kN であり, その後の荷重増加に対して ひずみは線形的に増加し,終局時のひずみは それぞれ 2140×10^{-6} , 2010×10^{-6} である。ま た,軸方向引張鉄筋も同様な増加傾向を示し ており,終局時のひずみは,それぞれ2350× 10⁻⁶, 2160×10⁻⁶である。無補強 RC 床版供試 体(RC-S)の引張鉄筋ひずみと比較すると,軸 直角方向,軸方向ともにひずみが大幅に抑制 された。

次に,CFS 補強 RC 床版の走行荷重の場合の軸直角方向の引張鉄筋のひずみは,供試体 C-R-1,2 は荷重 210.0kN 付近で降伏し,終局時のひずみはそれぞれ 2594×10^{-6} , 2383×10^{-6} である。軸方向の引張鉄筋の場合もほぼ同様な増加傾向を示している。RC 床版に CFS 補強することにより,ひずみが大幅に抑制された。よって,走行荷重に対しても補強効果が発揮されたと考えられる。

5.5 荷重と CFS ひずみの関係

荷重と軸直角方向の CFS ひずみの関係を 図-5(1),荷重と軸方向の CFS ひずみの関係を 図-5(2)に示す。

図-5(1),図-5(2)に示すように,静荷重に対する軸直角方向の CFS ひずみは供試体 C-S-1,2 ともに急激な増加が見られない。終局時の CFS ひずみはそれぞれ 2350×10^{-6} , 2160×10^{-6} となった。軸方向のひずみも軸直角方向のひずみとほぼ同様な増加傾向し,終局時まで急激な増加していない。終局時のひずみは C-S-1 が 2140×10^{-6} C-S-2 が 2010×10^{-6} となった。

次に,走行荷重に対しては,供試体 C-R-1, 2の軸方向,軸直角方向の CFS ひずみはとも に終局時まで線形的に増加している。軸直角 方向の終局時の CFS ひずみがそれぞれ 2226 \times 10^{-6} , 2586×10^{-6} となり , 軸方向の終局時の CFS ひずみが 2138×10^{-6} , 2135×10^{-6} となった。また,走行荷重のひずみは静荷重のひずみに比して大きくなっている。また,ひずみが終局時まで線形的に増加していることから,走行荷重に対しても補強効果が発揮されたと考えられる。

6.まとめ

- (1)無補強 RC 床版と CFS 補強 RC 床版の耐荷力と比較すると,静荷重の場合は 1.42 倍,走行荷重の場合は,1.41 倍耐荷力が向上した。これは, RC 床版に CFS 補強を施すことにより, CFS の引張強度が十分に発揮され,耐荷力が向上したと考えられる。
- (2)CFS 補強を施した RC 床版では終局時まで CFS がほとんどはく離しなかった。これは, CFS と RC 床版との合成効果が得られたため である。
- (3)荷重とたわみの関係から, CFS 補強 RC 床版を無補強 RC 床版に比べ, たわみの増加が小さい。また,急激なたわみ増加もみられない。これは, RC 床版に CFS 補強を施すことにより,変形性能が向上し,延性的な挙動を示したためである。
- (4)荷重と鉄筋ひずみと荷重と CFS ひずみの 関係から 静荷重実験・走行荷重実験ともに, ひずみの急激な増加が見られない。したがっ て,走行荷重が作用した場合においても CFS 補強は有効であると考えられる。
- (5)RC 床版における引張鉄筋ひずみと荷重の関係および CFS ひずみと荷重の関係から ,静荷重実験 , 走行荷重実験における RC 床版の引張鉄筋のひずみと CFS のひずみは同様な増加傾向を示している。したがって , RC 部と CFS が一体となり ,外力に対して抵抗したと考えられる。したがって , CFS 補強を施した RC 床版は合成構造として実用的であると評価できる。

参考文献

- 1) 阿部忠ほか:静荷重・走行荷重を受ける RC 床版の押し抜きせん断耐力,構造工学 論文集,vol.50A,pp.919-926,2004
- 2)土木研究所:炭素繊維シート接着工法による道路橋コンクリート部材の補修・補強に関する設計・施工指針(案),コンクリート部材の補修・補強に関する共同研究報告()(1999)
- 3)日本道路協会:道路橋示方書・同解説 (2003)