# フラクタルを用いたTV画像内の複数の移動物体の検出に関する研究 

| 日大生産工（院） | O奥野 | 修勝 |
| :--- | ---: | :--- |
| 日大生産工 | 黒岩 | 孝 |
| 日大生産工 | 松原 | 三人 |

## 1．はじめに

最近，公共の場所や民間企業などにお いて，犯罪の抑止や災害•事故の防止な どを目的として，カメラを備えた監視装置の導入が積極的に行われている。この場合，カメラから送られてくる画像を，監視員が常時確䇍し続けるため，かなり の労力と時間を必要とする。一方，その ような画像を，計算機を用いて定量的に解析できれば，遙かに効率的な監視作業 が可能となる。
前の報告では，Webカメラから得られ る映像（TV 画像）を一定の間隔でサンプ リングして作成した静止画像に対して， フラクタル解析を行った。その結果，TV画像はフラクタル性を持ち，画像の中の人間の移動方向を検出できる可能性のあ ることを報告した。ここでは，本方法を監視装置に適応する場合を想定し，TV画像内にある複数の人間の動きを，検出 できるか検討を行ら。

## 2．解析法

図1に，撮影方法の概略図を示す。摄影場所は，本学の百周年記念棟 2 階のエ レベータホールとした。複数の被験者を俯瞰して撮影できるよう，Webカメラは 3 階に設㯰した。この場合，背景となる床との距離は $9.5[\mathrm{~m}]$ である。TV画像の解析は，以下のような手順で行ら。先ず， Webカメラから得られるTV画像を用い


図1摄影方法の概略図
て，1秒間に15フレームの静止画像を作成し，順にフレームナンバー（0，1，2，$\cdots$ ） を割り振る。静止画像は，解像度は $1600 \times$ 1200 ［pixel］の 256 階調グレースケール画像 として作成する。次に，静止画像を大き さ $400 \times 400$［pixel］の小領域 $C_{i j}(i, j=1,2,3,4)$ に分割し，小領域ごとに，フレームナン バー 0 の画像と，各フレームにおける画像との間の画像特徵距離dを求める。こ のとき，比較した画像が同一であれば $d$ $=0$ ，異なる場合は $d \neq 0$ となる。

## 3．結果

図2に，分割した静止画像の例を示す。 ここでは，2名の被験者がWebカメラに対して水平方向に歩き，1名が画面内の小領域 $C_{14} \rightarrow C_{11} へ$ ，も5 1 名が $C_{21} \rightarrow C_{24}$ へ移動する場合について，検討を行う。

Study on the detection of moving objects in the television image by using fractal

図3及び図4に，小䫀域 $C_{11} \sim C_{14}$ ある いは小領域 $C_{21} \sim C_{24}$ ごすける画像特䡓距離をそれぞれ示す。いずれの場合も，被験者が小領域の端に現れてから全身が映 るまでは画像特徽距離は増加するが，全身が映つた後は，顕著な変化は見られな い。また，小領域の端から被験者がはず れてから全身が映らなくなるまでの間，画像特徴距離は減少する。

ここで，同図中の（I）～（V）の近傍に あいて，隣接する2つの小領域の画像特徽距離dの傾きについて検討する。例え ば小領域C $C_{13}$ 及 $C_{14}$ においては，$d \sigma$ 傾 きが「正」 $\rightarrow$ 「負」となるため，前の報告の結果から推定すると，被験者は $C_{14}$ $\rightarrow C_{13}$ の方向へ移動していることとなる。 また，小領域 $C_{21}$ 及 び $C_{22}$ におふいては，$d$ の傾きが「負」 $\rightarrow$ 「正」となるため，被験者は $C_{21} \rightarrow C_{22}$ の方向へ移動していると考えられる。従つて，以上の結果より，2名の人間の移動方向が検出できることが わかる。一方，小䅡域 $C_{31} \sim C_{34}$ において は，移動体がないため，画像特徵距離 $d$ $\leqq 0.01$ となり，皟著な変化が見られない ことを確認している。

## 4．末とめ

TV画像かっら作成した静止画像を，小領域に分割してフラクタル解析を行った ところ，画面内にある椱数の人間の移動方向を検出できる可能性のあることがわ かつた。

## 参考文献

［1］黒岩，中村，松原：＂Webカメラかららの画像 のフラタタル解析＂，2007年信学総大，A－ 6－5，p． 198 （2007）
［2］望月他：＂新しいフラクタル特徴とロバス トな構図情報を用いた画像検索＂，映像精報メディブ学会誌，Vol．57，No．6，pp．719－ 728 （2003）
［3］掛村他：＂仮想体積を用いたテクスチャ特徽変数とその応用＂，電子情報通信学会誌 D－II，Vol．J80－D－II，No．9，pp．2411－2420（1997）
［4］中村，黒岩，松原：＂TV画像のフラクタル解析（II）＂，第 40 回日本大学生産工学学部学術講演会，2－38（印刷中）


図2 静止画像


図 3 小領域 $C_{11} \sim C_{14}$ に於ける画像特徽距離の変化


図4 小領域 $C_{21} \sim C_{24}$ に於ける画像特徽距離の変化

