空間合成法を用いた送信波帯域制限の検討

 日大生産工(院)
 高田
 有也

 日大生産工
 田中
 將義

1.はじめに

ワイヤス通信では不要波の受信・送信を阻止し, 雑音の除去をするためにフィルタが用いられる. このため,送信側の変調後,および受信側の 復調前にローパ、カフィルタが配置されている.また, 送・受信全体としてのローパ、カフィルタでは符号間干 渉による波形ひずみを抑える波形整形機能も 求められる.したがって,送信側と受信側に 配置されるローパ、カフィルタには,所要伝送帯域を低 減できること,送・受信全体としてナイキストの第 1 基準を満足する特性を持つことの両面が要 求される.従来,送・受信全体のフィルタ特性と して Raised Cosine Filter(RCC)の特性がよ く用いられ,送信側と受信側にフィルタ特性を均 等に配分することによって最適伝送系を実現 している^[1,2].

一方,電力増幅器(HPA)の効率を良くする ためには増幅器の入出力特性が非線形領域で の増幅が望ましいが,スペクトラムが広がり,フィル タリング効果が低減する欠点がある.

そこで本研究では電力増幅器の高効率動作 と同時に送信波形の帯域制限を実現する方法 として空間合成法の検討を行った.

2. システム構成と原理

Fig.1 に従来使われている通信のシステム構成 を示す.まず,ディジタル信号を変調し,その後 フィルタによって送信波形を整形し,線形動作増 幅器によって増幅し,受信側のフィルタで再度フィ ルタリングを行い復調して出力する.

74 IPIにはディジ 外処理化した RCC 74 IPIが 用いられる. Fig.2 に RCC 74 IPIの構成を示 す.入力信号を Delay によって 1 つずつ遅 延し,Gain によりそれぞれ重み付けを行う. これらをすべて足し合わせて出力する. RRC 74 IPIはローIA7係数 の値(0~1)によっ て周波数応答, 12 パ IR応答が変化する. 12 パ IR応答は次式で与えられる.

$$h(t) = \frac{1}{1 - 16 \frac{\alpha^2 t^2}{T^2}} \left[\frac{\sin(1 - \alpha) \frac{\pi}{T}}{\frac{\pi}{T}} + \frac{4\alpha}{\pi} \cos\left\{(1 + \alpha) \frac{\pi}{T}\right\} \right] (1)$$

テ ィジ タル処理では,重み付けにはインパルス応 答をサンプリングした値を用いる.(2)式は RRC フィルタのインパルス応答をサンプリングしたものであ る.nはサンプル点,Nは(3)式で与えられる(T sはシンボル周期,Tsamはサンプリング周期)今回 は =0.3, N=4 とした.Fig.3 に n が 25 の ときの Gain による重み付けの係数を示す.

A Study on Band Limiting of Transmission Wave with Spatially Superposition Yuya TAKADA and Masayoshi TANAKA

$$h(n) = \frac{1}{1 - 16\frac{\alpha^2 n^2}{N^2}} \left[\frac{\sin\left(1 - \alpha\right)\frac{m}{N}}{\frac{m}{N}} + \frac{4\alpha}{\pi} \cos\left(1 + \alpha\right)\frac{m}{N} \right]$$
(2)

(3)

$$N = \frac{Ts}{Tsam}$$

Fig.2 ディジタル信号処理による

RCC フィルタの構成

Fig.3 RRC フィルタのインパルス応答

3. 空間合成法の構成

Fig.4 に今回提案するシステムの構成を示す. 入力信号を Delay よって遅延し Gain で重み 付けをすることまでは Fig.2 と同様であるが, 中央の5つ, Gain11から Gain15までの出 力を足し合わせて Amp1 に接続する.また, それ以外の20個の Gain を足し合わせ別の 電力増幅器 Amp2 に接続し,2つの電力増幅 器で増幅しそれぞれにアンテナを接続し空間で 電力合成する.

Fig.4 空間合成による 送信波帯域制限システムの構成

4.特性評価

本研究では特性評価として Gain による重 み付け後の PAPR(Peak to Average Power Ratio)の測定,周波数特性,BER 特性の測定, さらに電力効率 と消費電力比の比較を行った.

4.1 PAPR の評価

PAPR は平均電力に対する最大電力の比 であり x(t)を信号波とした時,以下の式で与 えられる.

$$PAPR = 10 \log \left[\frac{\max \left\{ x(t)^2 \right\}}{\max \left\{ x(t)^2 \right\}} \right] \ [dB] (4)$$

表1は従来方式である電力増幅器を1つ使 用した場合と今回提案する空間合成の PAPRの比較である.電力増幅器を1つ使用 した場合は平均電力と最大電力の差が大き いため約4.2[dB]と大きくなっている.一方, 本方式の中心5つの増幅器をまとめている Amp1のPAPRは,平均電力と最大電力の 差は小さく2.1[dB]と増幅器1つ使用の場合 と比べて2[dB]以上小さくなっている.また, その他の出力を足し合わせているAmp2の PAPRは6.4[dB]と大きいが平均電力が小さ い.よって本方式の電力の多くはAmp1で 増幅されることがわかる.

表1 PAPR の比較

	RMS	PAPR[dB]
従来方式	1	4.2
本方式 Amp1	0.97	2.1
本方式 Amp2	0.25	6.5

4.2 スペクトラムの比較

Fig.5 に周波数特性を示す.まず,従来の 方法では線形増幅のスペクトラムはきれいにフィルタ リングの効果が出ている.非線形領域で電力を 増幅させたときのスペクトラムは非線形歪みの影 響を受けて広がってしまっているのがわか る.また,今回提案した増幅器2つ使用し空 間合成をしたスペクトラムは,サイドローブを下げる ために Amp2 には20 個の Gain を足し合わ せた後,別の重み(0.68)をしている.

4.3 BER 特性の比較

Fig.6 は従来方式の線形増幅のときと非線 形増幅のとき,そして本方式のビット誤り率 (BER)特性を比較したものである.図より 両者の差異は認められない.

Fig.6 BER 特性の比較

4.4 消費電力の比較

電力増幅器(HPA)の消費電力は以下の式で与 えられる.

$$P_{\rm dc} = \frac{Pout}{\eta} \tag{5}$$

は電力効率である.従来の方式と本方式 では同一特性の電力増幅器を仮定した.例え ば Fig.7 のような入出力特性,電力効率特性 の電力増幅器を使用すると仮定して,Fig.5 のように従来方法と本方式のスペクトラムのサイド ローブレベルを同じレベルにしたときの消費電力 を比べてみる.表2は入力バックオフ,電力効率

,消費電力比である.電力効率 は Fig.7 から求め,消費電力比は従来方式の消費電力 を1としたときの比率である.

Fig.5 のように同じスペクトラムのとき,従来の 方式では-8.9[dB]の入力バックオフが必要となる. 一方,本方式では-6.3[dB]でよい.そのため 電力効率 は従来では 17[%],本方式では 25[%]と 8[%]の差が出る.消費電力は(5)式 を利用して,従来の方式を1とすると本方式 では 0.69 と従来の7割以下の低消費電力化 となる.

また,従来方法の線形動作と比べてみたものが表3である.線形動作をするためには -15[dB]の入力パックわが必要であり,効率もわずか5[%]である.消費電力を比べてみる と従来の線形動作を1とすれば本方式では 0.2と2割の低消費電力化が実現できる.

Fig.7 増幅器の入出力特性と電力効率

表2 非線形動作時の消費電力比較

	入力BO [dB]	効率 [%]	消費電力比
非線形	-8.9	17	1
Amp1	-6.3	25	0.69

表3 線形動作と非線形動作時の消費電力比較

	入力BO [dB]	効率 [%]	消費電力比
線形	-15.1	5	1
Amp1	-6.3	25	0.2

5.まとめ

本検討では電力増幅器を 2 つ使用しそれ ぞれ増幅した電波を空間で合成し波形の帯 域制限する方法を提案した.その結果,2つ の増幅器の消費電力は少なく済み,非線形動 作でスペクトラムを同じにした場合,消費電力は 従来方法の7割以下となること,線形動作と 比べると 2 割の消費電力となることを明ら かにした.また,BER 特性にも問題がない ことを明らかにした.今後はさらなるスペクト ラムの改善と消費電力の低減をし,BER 特性 に影響のない方法を検討していく.

参考文献

- [1] 高畑文雄, ディジタル無線通信入門, 培風館
- [2] 谷萩隆嗣,情報通信とディジタル信号処理, コロナ社
- [3] 高田,田中"非線形歪を考慮した変調信号 波形整形フィルタの研究",第 39 回日本大学 生産工学部学術講演会,P13 2-4,2006