<u>1.はじめに</u>

光触媒活性を有する物質は地球上に多く 存在しているが,酸化チタン以上の高性能 な光触媒は現時点では見つかっていない。 この酸化チタンは,化学的に安定で地球上 に豊富に存在し,人体に無害であり,さらに 低コストなどの利点があるために光触媒と して利用されている。酸化チタンは主に紫 外線を照射することにより,表面に付着し た有機物を水と二酸化炭素に分解する酸化 分解反応や表面に吸着した水を馴染ませる 親水化反応を示すことが知られている。

そこで、本研究ではRFマグネトロンスパ ッタリング法により作製した光活性を有す るTiO2薄膜の結晶構造、電気的特性ならび に光触媒活性に及ぼす成膜ガス圧の影響に ついて検討を行った。

<u>2.実験方法</u>

純度 99.5%のTiターゲットを用いてRF マグネトロンスパッタリング法によるTiO2 薄膜の作製装置の概略図を Fig.1 に示す。

成膜条件としてチャンバー内の真空度を 5.0×10⁻⁴ [Pa]以下まで高真空排気し,スパ ッタガスとしてAr+40%O2混合ガスを導入 し,成膜ガス圧を 2.0~4.0[Pa],高周波電源 により投入電力 150[W]でTiターゲットを スパッタすることにより薄膜試料を作製し た。尚,ターゲットと基板の距離は 55[mm] 日大生産工(院) 笈沼 義浩

日大生産工 新妻 清純・移川 欣男

magnetron sputtering apparatus.

ー定とし,膜厚が 500[nm]となるように成 膜を行った。基板としては,ソーダライムガ ラス基板を用いた。

成膜した試料の諸物性評価方法として,結晶 解析にはCu K を線源とするX線回折装置 (XRD),膜厚の測定には繰り返し反射干渉計, 電気抵抗率の測定には直流四端子法,酸化分解 反応の測定には光触媒チェッカーを夫々用い て測定した。

3.実験結果

3.1 X線回折による結晶構造解析

測定範囲を 2 =20~80°におけるTiO2薄 膜のX線回折図形をFig.2に示す。図から,成膜 ガス圧を 2.0~4.0[Pa]と変化させて作製した 全てのTiO2薄膜において, 2 =25.3°,37.8°,

Effect of UV Irradiation on Electrical Resistivity of TiO2 Thin Film Having Photocatalytic

Yoshihiro OINUMA, Kiyozumi NIIZUMA and Yoshio UTSUSHIKAWA

38.6°,48.0°,55.1°,70.3°付近にTiO2で ある(101),(004),(112),(200),(211)および (220)面からの各回折線が認められることか ら,正方晶であるアナターゼ型の結晶構造を 有していることが分かった。

TiO₂ thin films.

3.2 格子定数の成膜ガス圧依存性

成膜ガス圧の増加に伴う格子定数 a 値な らびに c/a 値は,顕著な変化は認められなか ったが,格子定数 c 値は, 3.0[Pa]のガス圧で 成膜したTiO2薄膜において最小値を示し, 3.0[Pa]から成膜ガス圧が増減することにより, 格子定数 c 値は増加傾向を示した。

Table.1 Dependence of lattice constant a,c and c/a for TiO_2 thin films prepared on various gas pressures.

Gas Pressure [Pa]	a [nm]	c [nm]	c/a
2.0	0.383	0.972	2.538
2.2	0.382	0.966	2.529
2.4	0.381	0.965	2.533
2.6	0.379	0.960	2.533
3.0	0.378	0.959	2.537
3.4	0.382	0.978	2.560
3.6	0.378	0.974	2.577
3.8	0.378	0.961	2.542
4.0	0.379	0.971	2.562
Standard Value	0.379	0.951	2.509

<u>3.3 TiO2</u>薄膜の光触媒チェッカーによる <u>吸光度における紫外線照射時間依存性</u>

成膜ガス圧を 2.0~4.0[Pa]と変化して作 製したTiO2薄膜の光触媒チェッカーによる 吸光度における紫外線照射時間依存性をFig. 3に示す。図から、全てのTiO2薄膜において、 吸光度は紫外線照射時間の増大に伴い減少 することを確認できた。また,成膜ガス圧依 存性としては、3.0[Pa]のガス圧で成膜した TiO2薄膜において,最も良好であった。

Fig.3 Dependence of absorbance of Methylene Blue for TiO_2 thin films on UV irradiation time.

<u>3.4 TiO2薄膜における接触角の測定</u>

成膜ガス圧を 2.0~4.0[Pa]と変化して作 製したTiO2薄膜において,純水に対する接 触角の紫外線照射時間依存性をTable.2 に 示す。種々のガス圧で成膜したTiO2薄膜の 接触角は,紫外線照射時間の増大に伴い,減 少する傾向を示した。また,紫外線照射時間 の増大に伴い,TiO2薄膜上に滴下された水 滴の底辺幅が増加し,水滴の高さの減少傾 向から,薄膜表面における親水性の向上が 確認できた。さらに,紫外線照射 240 分後に おける接触角は,3.0[Pa]のガス圧で成膜し たTiO2薄膜において,14.25°と最小値を示 し,光活性が良好であった。 Table.2 Dependence of contact angle of water for TiO₂ thin films on various gas

Gas Pressure [Pa]	Contact angle (after UV irradiation for Omin)[deg.]	Contact angle (after UV irradiation for 240min)[deg.]
2.0	46.71 °	34.56 °
2.2	46.10 °	34.04 °
2.4	47.50 °	27.56 °
2.6	42.74 °	18.92 °
3.0	45.43 °	14.25 °
3.4	47.92 °	14.86 °
3.6	49.73 °	30.07 °
3.8	40.19 °	25.44 °
4.0	47.26 °	27.25 °

3.5 紫外線照射時間及び紫外線強度におけ

<u>る電気抵抗率</u>

成膜ガス圧を 2.0~4.0[Pa]と変化して作 製したTiO2薄膜の紫外線照射時間における 電気抵抗率の紫外線強度依存性を Fig.4~6 に示す。各図から,紫外線照射時間の増大に 伴い電気抵抗率は減少する傾向を示し,照射 前と比較すると約3桁から6桁減少した。ま た,全ての成膜ガス圧において,紫外線強度が 増すにつれて電気抵抗率の減少が増加した。 さらに,すべての紫外線強度において,3.0 [Palが最良の紫外線応答を示した。

Fig.4 Dependence of resistivity for TiO_2 thin films on UV irradiation time (2Pa).

thin films on UV irradiation time (4Pa).

3.6 紫外線強度と電気抵抗率

成膜ガス圧を 2.0~4.0[Pa]と変化して作製 したTiO2薄膜の紫外線強度と電気抵抗率の関 係をFig.7,Fig.8 に示す。夫々の図には、1 分後 と 2 分後の紫外線強度の変化における電気抵 抗率を示す。夫々の図より、紫外線強度の増大 に伴い、電気抵抗率の減少が増加することより、 紫外線強度と電気抵抗率は、比例の関係にある ことが分かる。また、紫外線照射時間 1 分後に おいて、紫外線強度と電気抵抗率の傾きが最も 大きく、応答速度が最も速かった。さらに、紫外 線照射における電気抵抗率の応答速度に関し ては、照射時間 1 分後においては 4.0[Pa]の傾 きが 0.43 であり、2 分後においては 3.0[Pa]の傾

Fig.7 Dependence of resistivity for TiO₂ thin films on ultraviolet rays strength (1min.).

Fig.8 Dependence of resistivity for TiO₂ thin films on ultraviolet rays strength (2min.).

4.まとめ

RFマグネトロンスパッタ法により,TiO2 薄膜を作製し,結晶性構造解析,電気抵抗率な らびに諸物性について検討した。本実験結果 をまとめると次の通りである。

1)全てのTiO2薄膜において、アナターゼ型 の結晶構造を有していることが確認された。 2)格子定数 a 値ならびに c/a 値は、成膜ガス圧 依存性は見られなかったが,格子定数 c 値は 3.0[Pa]において最小値 c=0.959[nm]を示し, 3.0[Pa]から成膜ガス圧が増減することにより、誌 A,Vol.126,No.5,pp385-390, (2006)

格子定数c値は増加傾向を示した。 3)全てのTiO2薄膜において、吸光度は紫外線 照射時間の増大に伴い減少することを確認 できた。また、3.0[Pa]のガス圧で成膜した TiO2薄膜において最も良好であった。 4)全てのTiO2薄膜において接触角は、紫外 線照射時間の増大に伴い,減少する傾向を 示した。また,紫外線照射240分後における 接触角は,3.0[Pa]のガス圧で成膜したTiO2 薄膜において,14.25°と最小値を示した。 5)紫外線照射時間の増大に伴い電気抵抗率 は減少する傾向を示し,照射前と比較すると 約3桁から6桁減少した。 6)全ての成膜ガス圧において、紫外線強度が 増加するにつれて電気抵抗率の減少率が増 大する傾向を示した。またいずれの紫外線 強度においても,成膜ガス圧が 3.0[Pa]の時に おいて,電気抵抗率の低下現象が最大となった。 7) 紫外線強度と電気抵抗率の関係から,紫外 線強度と電気抵抗率は比例関係にあること が分かった。また、紫外線照射時間1分後に おいて,紫外線強度と電気抵抗率の傾きが最 も大きく,応答速度が最も速かった。さらに, 成膜ガス圧条件で比較すると,紫外線照射時 間1分後においては4.0[Pa],2分後において は 3.0 [Pa] が最も傾きが大きく, 応答速度が 速かった。

参考文献

1)大谷文章,光触媒のしくみがわかる本,技術評論 社, (2003)

2)太田英二・坂田亮,半導体の電子物性工学, 裳華 房, (2005)

3)早川考宏・新妻清純・移川欣男、「マグネトロンス パッタ法によるTiO2薄膜の紫外光照射に伴う光触 媒効果ならびに電気抵抗率の減少」電気学会論文