マルチボディシミュレーションによる二輪車用ステアバイワイヤの検証

日大生産工(院)	○桑原 健吾	日大生産工 (院)	片桐 希
日大生産工	丸茂 喜高	日大生産工	綱島 均

1 緒言

二輪車は、一般的に車両が軽量であり、エンジンの 排気量も小さいため、燃費がよい.また、都市部では 移動速度が乗用車と比べて高いという利点を有して いる.加えて、省スペース性が高いため、輸送密度や 駐車密度を高めることが可能である.

最近,自動車の抱える社会的な問題に対して、自動 車輸送の実態に適したコミュータの開発が行われて いる¹⁾. 筆者らは、比較的操縦が難しいとされている 二輪車に対して、ステアバイワイヤ技術^{2),3)}を適用す ることにより、複雑な操縦を除去できることを示した 4). その結果,前述の二輪車のもつ利点とあわせて, 二輪車を誰もが簡単に操縦できるコミュータとして 利用できる可能性が示唆された.しかし、そこで検討 されたシミュレーションモデルは、Sharp⁵⁾により定式 化された簡易モデルであり,実写適用への妥当性が必 ずしも示されたわけではない. また, そこでは, 制御 系設計モデルと制御対象モデルが同一であり, 二輪車 の質量は,乗車するライダのそれに比較的接近してい るため、 ライダの身体の影響が、 乗用車の場合と比較 して大きく,モデル化誤差やロバスト性の検証も重要 である.

本研究では、二輪車の運動を詳細に再現した汎用シ ミュレーションソフトウェアであるBikeSim⁶⁰を用い て、二輪車におけるステアバイワイヤ技術の妥当性を 検証することを目的とする.

2 シミュレーションモデル

2.1 車両モデル

制御効果を検証するために、二輪車の運動を詳細に 再現した汎用シミュレーションソフトウェアである BikeSimを用いる.このソフトウェアで使用されてい る運動モデルは、横運動、ヨー運動、ロール運動,操 舵系運動のほかに、車体の前後、上下、ピッチ運動に 加えて、車輪の回転運動等も考慮されたモデルである ⁷⁾.また、二輪車に乗車しているライダの身体の運動 もモデル化されていて、車体のロール角およびロール レイトに応じて、ライダ上半身のリーン角が決定され る.この車両モデルは、ライダを含む9つの剛体から 構成されていて、運動自由度は21自由度である.ま た、座標系は右手上向きとなっている.

本研究の計算に用いた車両緒元は,重量約150kgの 中型車のものである.ライダの質量は約70kgである. 2.2 同定モデル

v = Cx

上記モデルに対し、制御系設計のための線形モデル を導出するため、システム同定を行う.システム同定 時の条件として, 走行速度16.7m/s(60km/h)で直進走行 中に、図1左上に示すような、振幅5Nm、周波数5Hz の正弦波形一周期の操舵トルクtを入力する.このと きのヨーレイト \dot{v} , ロール角f, 操舵角dの各応答を検 出し、入出力データからNumerical Algorithms for Subspace State Space System Identification 法(N4SID 法) 8)を用いて状態空間モデルを導く.この方法は不 安定系や閉ループ系などにも適用することが可能で あり, 二輪車のシステム同定にも用いられている^{9),10)}. 導出するモデルの次数については、2次から10次まで の次数で、十分な再現性を得られ、かつ次数が低いモ デルを選定した結果,得られたモデルの次数は6次と なった.以上より、同定されたモデル(以下、同定モ デル)の状態方程式は以下のようになる.

 $\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u} \tag{1}$

ただし, $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \end{bmatrix}^T$, u = t, Aは6 次のシステム行列, Bは6行1列の入力行列である.また, 出力方程式は以下の通りである.

(2)

ただし、 $y = \begin{bmatrix} \dot{y} & f & d \end{bmatrix}^T$, Cは3行6列の出力行列であ

る. この同定モデルに対し,同定時と同条件のシミュ レーションを行った. そのときの,車両モデル,同定 モデルのそれぞれの時系列応答を図1に示す. この図 より,車両モデル,同定モデルそれぞれの応答がほぼ 一致しており,車両モデルの妥当性が示されているこ とがわかる.

次に、同定モデルの極配置を図2に示す.この図より、同定モデルは二組の共役な複素固有値と一つの不 安定な実固有値、安定な実固有値をもつことがわかる. 一般に、二輪車の直進時の運動モードは、操舵系の振 動であるウォブルモードと、多自由度が連成したウィ ーブモード、および車体が倒れこむ非振動運動である キャプサイズモードの3つの運動モードが明らかにさ れている.ウィーブモードの振動数は1~4Hz、ウォブ ルモードの振動数は6~10Hzとされており、同定モデ ルの極配置と対応がとれていることがわかる.

Evaluation of Steer-by-Wire System for Motorcycles by Multibody Dynamics

Kengo KUWAHARA, Nozomi KATAGIRI, Yoshitaka MARUMO, and Hitoshi TSUNASHIMA

Fig.2 Pole placement of identified model

これらの結果から、同定モデルは、一般的な二輪車の特 徴を表しており、車両モデルの特性を十分再現していると いえる.

3 制御系設計

本研究では、ライダから入力された指令値に対応した目 標ロール角を、ステアバイワイヤの操舵トルクにより実現 する制御系を設計する.なお、ここでは、目標ロール角は ライダから直接指令されるものとする.目標ロール角に対 するフィードフォワード制御入力t_fと、指令入力に対応す る状態からの偏差に対するフィードバック制御入力t_bを考 えると、制御入力t_{dw}は以下のように表せる.

$$\boldsymbol{t}_{sbw} = \boldsymbol{t}_{ff} + \boldsymbol{t}_{fb} \tag{3}$$

このとき、以下に示す二自由度制御系を設計する.

3.1 フィードフォワード制御

ライダから指令された目標ロール角f_{des}を維持するのに 必要な操舵トルクをフィードフォワード制御により実現す る. 今,同定モデルにおいて,操舵トルクからロール角ま での伝達関数が以下のように表されるものとする.

$$f(s) = G_f(s)t(s) \tag{4}$$

この伝達関数の定常成分のみを考慮し、目標ロール角に対

するフィードフォワード制御による操舵トルクtgを以下のように定める.

$$t_{ff} = G_f^{-1}(0) f_{des}$$
 (5)

3.2 フィードバック制御

フィードバック制御は、状態フィードバックをベースと する最適制御理論を用いることとし、センサで観測された 物理量から状態変数を推定するために、カルマンフィルタ を併用したLQG制御を適用する.

定常旋回中に、(1)式で示したシステムの状態変数のいく つかは有限な定常値を持つ.そこで,各定常値に追従させ る設定値制御レギュレータを設計する.今,同定モデルの 操舵トルクから,各状態変数までの伝達関数が以下のよう に表現できるものとする.

$$x_i(s) = G_v(s)t(s) \tag{6}$$

ただし, *i*=1,2,...,6 である.

これらの伝達関数の定常成分を用いて、ある目標ロール角 が与えられたときの各状態変数の定常値は、(6)式より、以 下のように表すことができる.

$$x_{i0} = G_{x_i}(0)G_f^{-1}(0)f_{des}$$
(7)

ただし, *i*=1,2,...,6 である.

.

これらを状態変数の平衡点として,以下のようにまとめる.

 $\neg T$

$$\mathbf{x}_{0} = \begin{bmatrix} x_{10} & x_{20} & x_{30} & x_{40} & x_{50} & x_{60} \end{bmatrix}^{r}$$
 (8)
平衡点からの状態変数 $\Delta \mathbf{x}$ を、以下のように定義し、これを

新たな状態変数として、レギュレータを構成すればよい.

$$\Delta x = x - x_0 \tag{9}$$

ただし、 $\Delta \mathbf{x} = [\Delta x_1 \quad \Delta x_2 \quad \Delta x_3 \quad \Delta x_4 \quad \Delta x_5 \quad \Delta x_6]^T$ レギュレータの設計にあたっては、(1)式のシステムに対し て、以下に示す評価関数が最小になるようなフィードバッ クゲインを求める.

$$J = \int_0^\infty \left(q_f f^2(t) + r t_{fb}^{\ 2}(t) \right) dt \tag{10}$$

ここで、*q_f*,*r*は、それぞれロール角、操舵トルクに対する 重みである.求まったフィードバックゲインKに対して、 平衡点からの状態変数をかけることで、設定値制御レギュ レータの制御入力が決定される.

$$\boldsymbol{t}_{fb} = -\boldsymbol{K}\Delta\boldsymbol{x} \tag{11}$$

 $\forall z \not \in U, \quad \mathbf{K} = \begin{bmatrix} K_{x_1} & K_{x_2} & K_{x_3} & K_{x_4} & K_{x_5} & K_{x_6} \end{bmatrix}$

次に、状態推定を行う上で、検出する物理量として、シ ステム同定時に用いた、ヨーレイト、ロール角、操舵角を 採用し、カルマンフィルタを設計する.プロセスノイズを wとして、制御対象の入力端に操舵トルク外乱*t*_{da}が加わる ものとすると、カルマンフィルタを用いた状態方程式は以 下のようになる.

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u} + \boldsymbol{G}\boldsymbol{w} \tag{12}$$

ただし, $w = t_{dist}$, G = B. また,出力方程式は,センサ ノイズ**n**を用いて以下のように記述できる.

$$y = Cx + v \tag{13}$$

Fig.3 Block diagram of LQG control

$$\hbar \tilde{\mathcal{L}} \mathcal{L}, \ \mathbf{v} = \begin{bmatrix} v_{\dot{\mathbf{v}}} & v_f & v_d \end{bmatrix}^T$$

以上より、カルマンフィルタゲインを算出し、観測出力と 制御入力から状態変数を推定する.このときのブロック線 図を図**3**に示す.

4 シミュレーションによる検討

前章で得られた制御系を検証するために時系列シミュレ ーションを行う.ここでは、1)ライダから目標ロール角が 入力された場合の実ロール角の追従性、2)ライダからの指 令値はなく、外乱が入力された場合の直立安定性、3)一名 乗車時で設計された制御系で、二名乗車を行った場合のロ バスト性、の3つの項目について検討する.

以下で述べるシミュレーションでは、車両モデルが 16.7m/sで走行するものとした. (10)式に示す評価関数の重 みはそれぞれ q_f =100², r=1とした. また、プロセスノイズ であるヨーレイトのノイズ v_y 、ロール角のノイズ \mathbf{n}_f 、操 舵角のノイズ \mathbf{n}_d の共分散をともに0.01²とした.

4.1 目標ロール角への追従性

ライダから目標ロール角が入力された際の制御効果を検 討する.シミュレーション結果を図4に示す.この図には、 ロール角への重みqfを200²、300²とした場合も重ね書きして いる.この図左上のステアバイワイヤの操舵トルク入力に より、図右下のロール角応答から、実ロール角が目標ロー ル角に追従している様子がわかる.また、評価関数中のロ ール角に対する重みを大きくすることで、安定して追従性 が向上していることが確認できる.

4.2 外乱入力に対する直立安定性

ライダからの入力がない場合において、操舵トルク外乱 を入力した場合について検討する.シミュレーション結果 を図5に示す.図5右上のような、振幅10Nm、周波数2Hz の操舵トルク外乱t_{ds}を入力されても、図右下のロール角応 答から、車両モデルの直立安定性が保たれていることが確 認できる.また、ロール角への重みを増加させると、ロー ル角の収束が改善される.

4.3 二名乗車によるロバスト性

ここでは、二輪車の乗員のもっとも大きな質量変動を想 定して、二名乗車時の制御系のロバスト性について検討す る.まず、二名乗車の際に、操舵トルクを入力した場合の 時系列応答を図6に示す.この図より、二名乗車時では、一 名乗車時と比較して、ロール角や操舵角などは収束するが、 操舵トルク入力後、2Hz程度の振動が発生することがわか る.制御系のロバスト性の比較対象としては、一名乗車時

Fig.4 Time history of step response

Fig.6 Time history of vehicle mode (single and tandem riding)

で設計した制御系による応答と同程度となるPD制御系を 設計する.以下にPD制御系の概要を示す.

目標ロール角の変化は比較的小さく、その微分値は無視 できるものとすると、フィードバック制御による操舵トル クthは以下のように表せる.

$$t_{fb} = -K_f \Delta \dot{f} - K_f \Delta f \tag{14}$$

ただし、 $\Delta \dot{f} = \dot{f}$ 、 $\Delta f = f - f_{des}$

Fig.7 Block diagram of PD control

Fig.8 Time history of LQG and PD controls

Fig.9 Time history with tandem riding

指令がない場合には、ロール角が0となるように作用し、直 立安定化制御が実現される.このときのブロック線図を図7 に示す.フィードバックゲインは、前述のLQG制御系と、 ほぼ同じ効果が得られるように選定した結果, K_f=-111, K_{*}=-7.5となった. 前節と同じシミュレーション条件で,

LQG制御とPD制御の比較を行ったものを図8に示す.この 図より, 乗車人員が一名の場合には, ほぼ同等の制御効果 が得られることがわかる.次に、同じ制御系を用いて、車 両モデルの乗車人員を二名にした場合のシミュレーション 結果を図9に示す.同図右下のロール角の応答を比較すると, 破線で示したPD制御の応答と比較して, LQG制御の収束が 早いことがわかる. PD制御では、ロール運動に関してのみ フィードバックが行われるのに大して、状態フィードバッ クをベースとするLOG制御では制御対象の動特性を考慮 していることから、制御対象の特性が変動した場合であっ ても、PD制御の場合ほど制御効果が劣化しないことが考え られる.この結果,LQG制御を適用することで,乗車人員

が増えるような状況下でも、安定した制御効果が得られる ことが確認された.

5 結論

本研究では、 二輪車のステアバイワイヤ技術について、 高自由度モデルを用いたシミュレーションにより、有効性 を検証した.結果を要約すると以下のようになる.

- 1) 車両モデルの入出力データから、システム同定を行い、 制御対象の特性を再現するモデルを導出した.
- 2) ライダからの指令値に対応した目標ロール角に対して、 車両の実ロール角が追従する事を確認した.また、重 みを増やすことにより, 追従性が向上することを示し た.
- 3) ライダからの指令がない場合に、外乱入力に対して、 直立安定性が保たれることを確認した.また、重みを 増やすことにより, 直立安定性が向上することがわか った.
- 4) 設計した制御系は、乗員数の変動に対してもロバスト 性があることがわかった.

なお、本研究ではPD制御系の応答と比較してロバスト性を 検証したが、ロバスト性を定量的に検証したわけではない. そのため、今後、制御系にロバスト制御理論を適用し、ロ バスト性の定量的な検証を行う予定である.

参考文献

1) 加藤喜昭, 細川光典, 森田真, 未来パーソナルモビリ ティ i-unit, 自動車技術, Vol.60, No.2, (2006), pp97-102 2) 本山康夫, ステアバイワイヤと車両運動制御, 自動車 技術, Vol.57, No.2, (2003), pp.39-43

3) 金井喜美雄,自動車のドライブバイワイヤ-航空機との 共生, 自動車技術, Vol.58, No.4, (2004), pp.80-87

4) Y. Marumo and M. Nagai, Steering Control of Motorcycles Using Steer-by-Wire System, Vehicle System Dynamics, Vol.45, No.5, (2007), pp.445-458

5) R. S. Sharp, The Stability and Control of Motorcycles, Journal of Mechanical Engineering Science, Vol.13, No.5, (1971), pp.316-329

6) バーチャルメカニクスホームページ,

http://www.virtualmechanics.co.jp/html/bs.html

7) R. S. Sharp, D. J. N. Limebeer, A Motorcycle Model for Stability and Control Analysis, Mutibody System Dynamics, Vol.6, No.2, (2001), pp.123-142

8) 足立修一, MATLABによる制御のためのシステム同定, 東京電機大学出版, (1996), pp.138-139

9) 鎌田豊, 西村秀和, 計算機支援機構解析による二輪車 のモデル同定と前輪操舵制御、日本機械学会論文集C編、 Vol.69, No.681, (2003), pp.1309-1316

10) 鎌田豊, 西村秀和, 飯田英邦, 二輪車のシステム同定 と前輪操舵制御,日本機械学会論文集C編, Vol..69, No.688, (2003), pp.3191-3197