パルス YAG 溶接による純チタン薄板の割れ感受性試験

日大生産工(院)	石	野	貴	則
日大生産工	朝比	上奈	敏	勝
日大生産工	星	野	和	義
日大生産工	村	田		守
日大生産工	中	Л	—	人

1.緒言

YAG レーザ溶接は高エネルギー密度加工で あるため,TIG 溶接に比べ高速溶接が可能で あり,高温酸化の軽減,熱影響部および溶接 変形を抑制することが期待されている.そこ で,レーザ溶接をした場合の溶接性,特に割 れ感受性の評価が必要になる.アーク溶接に おける割れ感受性の評価はバレストレイン試 験法が広く実施され,割れ試験法そのものも 確立している¹⁾.しかし,バレストレイン試 験をレーザ溶接の割れ感受性の評価試験に適 用する場合は,レーザ溶接機と試験機の制約 から必ずしも容易ではない²⁾.

純チタンは引張強さが高く,極めて優れた 耐食性を有しているため,化学工業用耐食性 材料としても利用開発が進められた.また, 軽量と強さが要求された航空機,船舶,車両 材料に適用されている.

そこで本研究では、著者の一人がマグネシ ウム合金の溶接凝固割れ感受性試験に使用し た試験機³⁾を用い,レーザ溶接によるチタン の溶接割れ感受性を検討した.

2.試験片および実験方法

2.1 試験片

試験片には板厚 0.6mm の純チタン 2 種 (TP340C)を Fig.1 に示す形状, 寸法に機械 加工して実験に供した.溶接直前にエメリー ペーパーで研磨後,ブタノンで脱脂洗浄し実 験を行った.試験片の機械的性質を Table 1 に示す.

2.2 割れ試験

試験機の構造を Fig.2 に示す.負荷荷重は, 試験片の一方を固定台に固定し,他方を直動 レール上の台車に固定して台車に取付けた 軸をばねにより強制変位を与えて調整した. 負荷荷重の大きさはばねの変位とばね定数 により求めた.また,試験片に負荷される応 力の校正曲線は,Fig.3 に示す溶接試験片を

Fig.1 Size and shape of specimen for local tensile strain cracking.

Table 1 Mechanical properties of base metal.

Tensile strength	Elongation	Hardness
(MPa)	(%)	(HK0.05)
343	43	149

Fig.2 Principle of local tensile strain cracking test equipment.

Crack Sensitivity of Pulsed YAG Laser Welded Pure Titanium Sheet.

Takanori ISHINO, Toshikatsu ASAHINA,Kazuyoshi HOSHINO,Mamoru MURATA and Kazuto NAKAGAWA 想定した 50mm × 70mm の純チタン 2 種の試験 片中心線上のA側の端から 5mm 間隔でゲージ 長が 2mm のひずみゲージを 9 枚貼付して引張 試験機により引張荷重を負荷して測定した. その結果を Fig.4 に示す.試験片の応力分布 はA側 5mm, 10mm, 15mm の位置では圧縮応力を, 他の測定位置では引張応力を示し,試験片 A 側の端から 45mm の位置で引張応力は最大値 を示した.割れ試験では荷重 0.49kN, 1.47kN, 2.45kN の 3 条件とし, 24 時間荷重を負荷し て実験を行った.

2.3 溶接条件

溶接には最大平均出力 550W(最大パルス エネルギー70J)のパルス YAG レーザ溶接装 置を使用し,圧延方向に対して直角にビード オン溶接を行った.レーザヘッドは母材から の反射光を避けるために前進角 20°で固定 した.焦点位置を焦点距離 80mmの集光レン ズにより試験片表面とした.アシストガスお よびバックシールドガスにはアルゴンガス を用い,溶接直前にレーザヘッド内のガス置 換を 20 秒以上行った.溶接条件を Table 2 に示す.

3.実験結果および考察

3.1 溶接条件の選定

充分裏ビードが生成する適正溶接条件範 囲の選定を行った.レーザ出力,パルス幅, 溶接速度を変化させた結果 ,得られた溶接条 件範囲を Fig.5 に示す. ビード外観および溶 込みの良否は目視にて判定した.良否の基準 は,パルス幅の重なりが 30%以上で良好な 溶込みが得られた継手を ,パルス幅の重な りが 30%未満となりビード形状が不安定で あった継手を ,パルス幅の重なりがない継 手および溶込み不良の継手を ,溶落ちによ ってビードが形成されなかった継手を×と した.溶接速度 600mm/min の条件範囲が溶接 速度 1050mm/min に比較して広くなる傾向を 示した.また,いずれの溶接速度でもパルス 幅 5.0ms の条件範囲が他のパルス幅に比較 して広くなる傾向を示した.以後,主として パルス幅 5.0ms の条件について述べる.

Table 2 Laser welding conditions.

Pulse width		PW(ms)	2.5, 5.0, 7.5, 10.0	
Laser output		O(M)	100 ~ 500	
		Q(VV)	(5steps)	
Pulse frequ	ency	f(Hz)	20	
Welding spe	eed	V(mm/min)	600,1050	
Tilt angle		θ(deg.)	20	
Gas flow rate	Assist	Ga({/min)	30	
	Backing	Gb(ℓ/min)	30	

Fig.5 Classification of bead appearances.

ビード外観を Fig.6 に示す.全ての条件で 無負荷状態ではビード表面および裏面に割れ は認められなかった.溶接条件によらずビー ド表面および裏面にはスパッタが発生した. いずれの溶接条件でもビード表面および裏面 にはチタン特有の高温酸化および窒化を伴う 色調変化は認められなかった.このため,ビ ード外観観察では全溶接条件でチタンおよび チタン合金のイナートガスアーク溶接作業標 準 WES7102 の判定基準⁴⁾を満足していると考 える.

3.2 組織および硬さ

溶接部横断面のマクロ組織を Fig.7 に示す. 溶接速度 600mm/min のパルス幅が短く高出力 な条件ではアンダーフィルが観察されたが, 他の条件では溶接欠陥は観察されなかった.

溶融凝固部のミクロ組織を Fig.8 に示す. 溶融凝固部は等軸晶組織となった.レーザ出 力 400W,パルス幅 5.0ms の条件で溶接速度 600mm/min の平均結晶粒径が約 167µm,溶接 速度 1050mm/min では平均結晶粒径が 131µm となり溶接速度の増加にともない平均結晶粒 径が微細化する傾向を示した.このことは, ビームスポットの重なりが粗となり溶接部が 急熱急冷されたことによると考えられる.ま た,全条件の溶融凝固部の平均結晶粒径は母 材の値(約24µm)に比較して粗大化した.

溶接部横断面の板厚中央の硬さ測定結果を Fig.9 に示す.全ての溶融凝固部が硬化する傾向を示した.一般的に純チタン溶接部の硬さ は不純ガス量に比例して上昇する⁵⁾とされて いる.WES7102 によれば,純チタン溶接継手 の硬さは,母材に比較して+40HV 程度までは 不純ガス量が少ない健全な継手⁴⁾とみなされ ている.よって今回の溶接部は健全な溶接部 と考えられる.

3.3 割れ試験結果

負荷荷重が 0.49kN ,1.47kN では全ての条件 に割れが発生しなかった.Fig.10 に 2.45kN の条件での割れ試験の結果を示す.割れが発 生しなかった条件を ,割れが発生した条件 を×とした.割れは溶接中に発生し,いずれ

の溶接速度でもレーザ出力が低く、パルス幅 が狭い条件で割れが認められなかった。

荷重2.45kNでの試験後の外観写真をFig.11 に示す.割れは全ての条件で Fig.4 の負荷応 力が最大となる溶接終了直前から発生し、ビ ード上を溶接方向に平行に伸び,外観的には 分岐のない直線的となった.割れ長さは表裏 ともほぼ同じ長さであった.荷重2.45kNの条 件では最大応力は約 350MPa であり,割れが発 生するためには母材の引張強さと同程度の応 力が必要である.

割れ長さ測定結果を Fig.12 に示す. レーザ 出力および溶接速度の増加にともない割れ長 さが増加する傾向を示した. 純チタンの力学 的性質は主として結晶の粒径と形状によると の報告がある⁶⁾.しかし,本実験では平均結 晶粒径が微細化している溶接速度の速い条件 で割れ長さが増加する傾向を示した.これは 溶接速度の速い条件でビームスポットの重な りが粗となり,溶融凝固部中心にクレータが 認められ,平滑なビード形状が得られなくな ったためと考えられる.

SEM による破面観察結果を Fig.13 に示す. 継手の割れ開始部の破面はディンプルが認め られる延性破面であった.

本研究は文部科学省学術フロンティア推進 事業の一部として行われた.特記して謝意を 表す.

参考文献

- 1) 佐藤邦彦,溶接強度ハンドブック,理工学社, (1988) pp.3-31.
- 2) Sepold G., Juptner W., Teske K., Rothe R., Carstens F., Hot Crack Susceptibility during Laser Welding of Austenitic Steel, Conference Proceedings Japan-German Colloquium Welding Technologies and Economics, (1983), pp. 173-182.
- 3) 朝比奈敏勝,時末光,加藤数良,TIG 溶接に よる AZ31 マグネシウム合金の凝固割れ感受 性, 軽金属,(1999), pp.595-599.
- (社)日本溶接協会規格委員会,イナートガ 4) スアーク溶接作業標準,(1983), pp.9-10.
- 5) (社)溶接学会編,溶接・接合便覧,丸善, (2003), pp.1012.
- M.J.Donachie, Jr, チタンテクニカルガイ 6) ド,内田老鶴圃(1993),pp.163.

Fig.12 Relation between crack length and welding conditions.

7.5

10

5

2.5

(ms)

Fig.13 Microfractographs of cracked specimen. (V=600mm/min,Q=400W, PW=5.0ms)