自動車運転時における前頭連合野の高次脳機能計測

○柳沼 日大生産工(院) 健 日大生産工 綱島 均 日大生産工 丸茂 喜高 筑波大(院) 日大生産工(院) 小島 崇 筑波大(院) 伊藤 誠 稲垣 敏之

1. 緒言

近年,ドライバの運転における負担を軽減 し,支援することでより安全な運転を確保す るようなシステムの研究・開発が行われてお り,その一部はすでに実用化されている.し かし,運転者の集中力の低下などにより,予 期せぬ事故が引き起こされる可能性も考えら れる.そのため,運転における注意を認知工 学的,人体生理学的な立場から検討すること が必要である.

運転を行う際運転者は、知覚・認知・判断 を連続して行い運転をしている.情報を目や 耳などの感覚器から受けとり、集めた情報か ら判断を行ったうえで脳から操作の指令を出 している.つまりは、運転のプロセスである 知覚・認知・判断は脳活動によるものと考え られる.このような知覚・認知・判断の情報 に基づいて行動を計画し実行する脳の論理的 な思考を、高次脳機能と呼ぶ.

脳活動を評価し得る方法としては,非侵襲 画像診断法として最近注目されている機能的 磁気共鳴画像(fMRI: functional magnetic

resonance imaging)が考えられる.fMRI検査 は、磁気を用いて脳内の酸素化ヘモグロビン 濃度変化の局在を観察するもので、言語や認 知等,脳の高次機能の解明に大きな貢献をし てきている.しかし、fMRIは計測中に体動制 限があり、運転操作時の評価を行うにあたっ ては難点が多い.

これに対して,近年,近赤外分光法(NIRS: Near-Infrared Spectroscopy)と呼ばれる検査法 が普及してきている.これは,近赤外光によ り組織の酸素化ヘモグロビンあるいは脱酸素 化ヘモグロビンの増減を体表から評価するも のであり,非侵襲的検査法である. 機能的近赤外線分光法(fNIRS: functional NIRS),光トポグラフィは,NIRSの技術を用 いて大脳の機能局在を広範囲にマッピングし て評価することが可能である¹⁾.NIRSは,体 動制限が少なく,被験者に自然な状態で実験 が行える.今後この様な評価を行う上で有望 な検査機器であると言える.現在,fNIRS計測 による暗算課題や列車シュミレータを用いた 実験における脳活動が報告されている²⁾³⁾. そこで本研究では,機能的近赤外線分光法

(fNIRS)を用いて,運転操作に対応する脳活動を捉えられるかどうかについて,ドライビングシミュレータを用いた実験により検討を行う.

2. 機能的近赤外分光法(fNIRS)の原理

機能的近赤外分光法は,光を用いて脳血流 の変化を計測することによって間接的に脳の 活動を捉える非侵襲的計測法である. 神経活動が生じることにより局所脳血流が増 加し,血中のヘモグロビン濃度が変化する. 機能的近赤外分光法は,波長700~900nmの近 赤外光を組織に照射することにより,透過光, 散乱光から酸素化ヘモグロビン(oxy-Hb)お よび脱酸素化ヘモグロビン(deoxy-Hb)の濃 度変化を計測できる.

3. 自動車運転時の脳機能計測

3.1. ドライビングシュミレータ

図1に示すように、ドライビングシミュレー タを使用し、ドライバの脳機能計測を行った. 脳機能計測と合わせてドライバの運転操作を 記録した.また、図2に示すように小型カメラ を用いて、実験映像、被験者の挙動について も記録した.

Measurement of Drivers Higher Brain Function in Prefrontal Cortex

Takeru YANAGINUMA, Hitoshi TSUNASHIMA, Yoshitaka MARUMO, Takashi KOJIMA, Makoto ITOH and Toshiyuki INAGAKI

Fig. 1 fNIRS and Driving Simulator

Fig. 2 Measurement of brain function of driver

3.2. 運転課題

運転操作に対応する脳活動を捉えられるか どうか検討するため,発進と停止を繰り返す 課題を設定した.被験者は図3(a)のような 運転画面で実験を行った.図3(b)に示す区 間を,口頭による合図を受けて発進させ,市 街地の直線道路を40km/hで走行し,次の交差 点の停止線手前に停止させる.これを20秒間 ずつで4回繰り返し,全体で200秒の運転課題 とした.図4に実験デザインを示す.

(a) Images of Front of View in Driving

3.3. 計測方法

fNIRSを用いて,運転中のドライバの前頭連 合野の脳活動を計測した.計測装置は,島津 製作所製,光脳機能イメージング装置 OMM-3000を用いた.図5に光ファイバの配置 と計測位置を示す.数字は計測チャンネルを 表し,42チャンネルを計測した.被験者は, 普通自動車運転免許を保有する健常な男女6 名とした.

3.4. 脳機能計測結果

一般に、脳が賦活してもとに戻る場合の
oxy-Hbとdeoxy-Hbの変化は、図6に示されるような傾向をとることがわかっている⁴⁾.
図7
に、被験者Aの全チャンネルの計測結果を示す.
両外側において、oxy-Hbが上昇し、
deoxy-Hbが減少している.

しかしfNIRSの信号は、血圧変動・心拍・体 動変化の影響や、測定装置のノイズなど脳活 動に関係しない信号も含むため、詳細な評価 を行うには、これらを分離する信号処理が必 要になる.

Fig. 5 Position of Optical Fibers and Channels

Fig. 6 Hb Concentration change due to neural activity⁴⁾

- 4. 多重解像度解析による脳血流変動の 分解と再構成
- 4.1. 離散ウェーブレット変換による 多重解像度解析

ウェーブレット変換⁵⁾は,マザーウェーブ レットと呼ばれる小さな波 *y(t)*を平行移動,伸 縮させて解析したい波形*S(t)*の局所的な様子 を表し,これを元に波形を解析していくもの である.離散ウェーブレット変換は次式で与 えられる.

Fig. 7 Hb Concentration Changes in Frontal

$$D_{m,n} = \int_{-\infty}^{\infty} S(t) \psi_{m,n}(t) dt \tag{1}$$

通常,離散ウェーブレット解析の2進格子配置は, 正規直行となるように選ばれる.これにより,原 信号の完全な再生が冗長なしに可能になる.

多重解像度解析(MRA: multi-resolution analysis) は、離散ウェーブレット変換を用いて信号を階層 構造に分解するものである.対象の波形S(t)をいく つかの近似成分(低周波数成分)と詳細成分(高 周波数成分)に分解する.レベルjにおける信号の 詳細成分は

$$d_m(t) = \sum_{n=-\infty}^{\infty} D_{m,n} \psi_{m,n}(t)$$
 (2)

となるので、原信号S(t)は、次のように表現できる.

$$S(t) = a_j(t) + \sum_{m=1}^{j} d_m(t)$$
 (3)

ここで、 d_m は詳細成分、 a_j 近似成分である. マザーウェーブレット $\psi(t)$ は、コンパクトサ ポートであり正規直交基底となるDaubechies のウェーブレットを用いる.このウェーブレ ットは、生成指数Nによって正則性が変化する 特徴を持つ.今回は、比較的高次の生成指数 を用いることとし、N=7とした.

4.2. fNIRS 信号の分解と再構成

タスク関連の変化が顕著であった27チャンネルのoxy-Hbの多重解像度解析の結果を図8に示す.

近似成分(*a*₁₀)に実験全体のトレンドが抽出 されていることがわかる.*d*₁,*d*₂は比較的大 きい振幅を持つ.これは心拍による血流変動, および計測ノイズであると考えられる.

Fig. 8 Decomposition of oxy-Hb in channel 27

タスク、レストの反復が40秒であるので、 d_7 成分がタスクに関連する変動の中心成分となる.そこで、タスクに関連する d_6 、 d_7 、 d_8 を加算 して信号を再構成した.

再構成した信号(27チャンネル)と車両速度の関係を図9に示す.運転課題遂行時(図中の網掛け部)に図6で示したような活動パターンが観察され,脳が賦活していることがわかる.

5. fNIRS 信号の加算平均と脳機能画像による 解析

多重解像度解析の結果に加算平均を行い, 各運転での脳活動のばらつきをなくした脳活 動を解析した.図10(a)に多重解像度解析を 行った27チャンネルにおける,4回の走行を加 算平均した結果と運転時のアクセル,ブレー キ操作量の関係,図10(b)に再構成したoxy-Hb 信号から作成した脳機能画像を示す.

図10(a)の操作量は、正の値がアクセル操 作量、負の値がブレーキ操作量を示す.口頭 による合図を受けてブレーキを緩めて走行を 開始してから,停止するまでoxy-Hbが上昇し, その後、停車中に減少している. このことか ら、運転作業中に脳が賦活していることがわ かる. また, 図10(b) に示す脳機能画像から, ①の運転開始時には低かった脳活動が、②の 運転課題終了時には前頭前野両外側部で脳活 動が上昇していることがわかる(図中の白色 部分).また③の停車中には左右両外側部で oxy-Hbが低下していることから、走行中に賦 活した部位がもとの状態に戻るためoxy-Hbが 低下していると考えられる.列車運転士を対 象とした実験においても、ブレーキ操作後に 同じ部分の活動が上昇されていることが報告 されている⁶. このことは, ブレーキ操作を 行うための、小脳の内部モデルと前頭背外側 部との関連を強く示すものと考えられる.

6. まとめ

機能的近赤外線分光法(fNIRS)を用いて, 前後方向の運転操作(発進停止)に対応する 脳活動を捉えられるか,ドライビングシミュ レータを用いた実験により検討を行った.そ の結果,ブレーキ操作に関連する脳活動が計 測された.

運転により得られたfNIRS信号を,ウェーブ レット変換を用いた多重解像度解析により分 解,再構成した結果,運転課題遂行時の脳活 動を明瞭にとることが可能となった.さらに, 再構成したfNIRS信号に加算平均を行い,脳機 能画像を作成した.その結果,運転中に前頭 前野背外側部の脳活動が上昇することがわか った.

今後は、市街地での運転や、危険を予測す るような運転などの、より実際の運転に近い 実験を行い、自動車運転時の脳活動を計測す る必要がある.

なお本研究は,文部科学省科学研究費補助 金基盤研究A(課題番号18201031 非拘束モ ニタリングにもとづく追突防止支援と過信抑 制インタフェース:研究代表者 筑波大学大 学院 伊藤誠)の補助,および平成19年度日 本大学学術助成金(総合研究)の助成を受け た.

Fig. 9 Task-Related fNIRS Signal and Vehicle Speed (channel 27)

参考文献

1) Y.Hoshi: Development of Functional Near Infrared Imaging System, NIRStation, INTERNATIONAL, REVIEW, OF NEUROBIOLOGY, Vol. 66, p.237-268 (2005)

2) 小島,柳沼,綱島,広瀬,清水,塩沢,泰羅,土 師:機能的近赤外分光装置(fNIRS)を用いた作業負 荷時の高次脳機能計測,自動車技術会学術講演前刷 集,No.60-07, p.19-22 (2007)

3) 綱島,小島,塩沢:機能的近赤外分光法による列 車運転時の脳機能計測,自動車技術,Vol.60,No.5, p.81-86 (2006)

4) S. A. Huettel, A. W. Song and G. McCarthy: Functional Magnetic Resonance Imaging, Sinauer Associate, Inc., (2004)

5) I. Daubechies: Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series In Applied Mathematics: Society for Industrial and Applied Mathematics, No. 61 (1992)

6) 小島, 綱島, 伊藤, 塩沢: 機能的近赤外分光 (fNIRS) 装置を用いた列車運転時の高次脳機能計測,人間工 学, Vol.43, No.4, p.193-200 (2007)