1 はじめに

昨今、X線CTや遺跡調査など、逆問題がさま ざまな分野で注目を浴びている⁽¹⁾。我々の身 近なところに逆問題は存在している。目に見 えないものを、何らかの情報を与えて得られ た反応(出力)から推定する問題が逆問題で あるが、その数値シミュレーションは、非常 に困難を極めている。その理由として、逆問 題は厳密解を構成できなかったり、近似解が 不安定になり数値誤差が増大し計算不可能に なるからである⁽¹⁾。この問題を解決するため に、多倍長計算に注目が集められている⁽²⁾。

多倍長計算では、任意の桁数で近似するこ とで誤差の少ない数値計算を行なうことがで きる⁽³⁾。これによって逆問題の数値シミュレ ーションを行ない、安定した近似解を得るこ とができる。

本論文では、熱伝導逆問題⁽²⁾について有限 要素法に基づく多倍長計算を行い、その適用 性を検証する。

2 熱伝導逆問題

2.1 熱伝導方程式

$$\frac{\partial u}{\partial t} = -\frac{\partial^2 u}{\partial x^2} \quad , 0 < t, -1 < x < 1$$
 (1)

$$u(x,0) = \cos\frac{\pi x}{2}, \quad -1 \le x \le 1$$
 (2)

$$u(-1,t) = 0, \quad 0 < t$$
 (3)

$$u(1,t) = 0, \quad 0 < t$$
 (4)

本論で対象となる逆問題は、普通の熱伝導 方程式とは異なる式(1)について初期条件 (2)及び境界条件(3)、(4)を満たす解 u(x,t)を求めることになる。 その厳密解は次のように与えられ、そのグ ラフを図1に示す。

日大生産工(院)	○小林	賢
日大生産工	登坂	宣好

$$u(x,t) = \exp\frac{\pi^2 t}{4} \cos\frac{\pi x}{2}, \quad 0 \le t, \ -1 \le x \le 1 \quad (5)$$

したがって、この厳密解を数値的に再構成す ることが本論の目的となる。

2.2 弱定式化

この初期値―境界値問題を近似的に解くた めに、有限要素法を適用する⁽⁴⁾。 式(1)を、任意関数vをかけて積分する。

 $\int_{-1}^{1} \left(\frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial x^2} \right) v dx = 0$ (6)

上式のu(x,t)に対する基底関数 ϕ_j による有限 要素近似 $\tilde{u}(x,t)$ と、 $v = \phi_j$ とすることによって 次の有限要素方程式を得る。

$$\mathbf{M}\,\frac{d\mathbf{u}}{dt} - \mathbf{K}\mathbf{u} = \mathbf{0} \tag{7}$$

ただし、

$$\widetilde{u}(x,t) \approx \sum_{j=1}^{n} u_{j}(t) \phi_{j}(x)$$
 (8)

$$\mathbf{u} = (u_1, u_2, \cdots, u_n)^T \tag{9}$$

$$\mathbf{M} = \left(\int_{-1}^{1} \phi_i \phi_j \, dx \right) \tag{10}$$

$$\mathbf{K} = \left(\int_{-1}^{1} \frac{d\phi_i}{dx} \frac{d\phi_j}{dx} dx \right)$$
(11)

The Multiple Precision Arithmetic of an Inverse Problem for the Heat Equation

Masaru KOBAYASHI and Nobuyoshi TOSAKA

2.3 近似スキーム

式(7)を近似的に解くための時間方向近 似として、 i の差分近似に前進差分と中心 差分を用いると、以下の近似スキームが構成 できる(4)。

I 前進差分

① 陽的スキーム

$$\mathbf{M} \frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = \mathbf{K} \mathbf{u}^k \qquad (12)$$

$$\mathbf{M} \frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = \mathbf{K} \mathbf{u}^{k+1} \qquad (13)$$

$$\mathbf{M} \frac{\mathbf{u}^{k+1} - \mathbf{u}^{k}}{\Delta t} = \mathbf{K} \left\{ (1 - \theta) \mathbf{u}^{k} + \theta \mathbf{u}^{k+1} \right\} \quad (14)$$

$$\mathbf{M} \frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = \mathbf{K} \frac{\mathbf{u}^k + \mathbf{u}^{k+1}}{2} \qquad (15)$$

3

④ ガラーキン法 (
$$\theta = 2/3$$
)

$$\mathbf{M} \frac{\mathbf{u}^{k+1} - \mathbf{u}^{k}}{\mathbf{u}^{k} + 2\mathbf{u}^{k+1}} = \mathbf{K} \frac{\mathbf{u}^{k} + 2\mathbf{u}^{k+1}}{\mathbf{u}^{k+1}}$$
(16)

 Δt

⑤ 陽的スキーム

$$\mathbf{M} \frac{\mathbf{u}^{k+1} - \mathbf{u}^{k-1}}{2\Delta t} = \mathbf{K} \mathbf{u}^k \qquad (17)$$

3 数値計算例

図1に示す厳密解に対して、近似スキーム による計算結果を図2~図11に示す。図2 ~図6は多倍長計算を施さない場合、図7~ 図11は多倍長計算を施した場合である。表 1は t=1のときの各 x 座標における、厳 密解と近似スキーム①~⑤による近似解であ る。ただし、x 座標の分割数を20、∠t = 0.02、h = 0.1 とした。なお、多倍長計算に ついては文献3)、5)を参照した。

図2 スキーム①の近似解

図7 スキーム①の近似解 (多倍長 100 digits)

図6 スキーム⑤の近似解

(多倍長100 digits)

x	厳密解	スキーム①	スキーム②	スキーム③	スキーム④	スキーム⑤
-0.9	1.845	1.747	1.975	1.855	1.893	0.556
-0.8	3.644	3.452	3.901	3.664	3.740	1.098
-0.7	5.353	5.071	5.732	5.383	5.495	1.613
-0.6	6.931	6.566	7.421	6.970	7.115	2.089
-0.5	8.338	7.899	8.927	8.385	8.559	2.512
-0.4	9.540	9.037	10.214	9.593	9.792	2.875
-0.3	10.507	9.953	11.249	10.565	10.785	3.166
-0.2	11.215	10.624	12.007	11.277	11.512	3.379
-0.1	11.647	11.033	12.470	11.712	11.955	3.509
0.0	11.792	11.171	12.625	11.858	12.104	3.553
0.1	11.647	11.033	12.470	11.712	11.955	3.509
0.2	11.215	10.624	12.007	11.277	11.512	3.379
0.3	10.507	9.953	11.249	10.565	10.785	3.166
0.4	9.540	9.037	10.214	9.593	9.792	2.875
0.5	8.338	7.899	8.927	8.385	8.559	2.512
0.6	6.931	6.566	7.421	6.970	7.115	2.089
0.7	5.353	5.071	5.731	5.383	5.495	1.613
0.8	3.644	3.452	3.901	3.664	3.740	1.098
0.9	1.845	1.747	1.975	1.855	1.893	0.556

表1 厳密解と近似解(t=1)

4 おわりに

本論では、熱伝導逆問題に対して多倍長計算 を用いた有限要素法の適用性を示した。逆問題 の数値計算に対し、たとえ単純な1次要素によ る有限要素法であっても多倍長計算を行なう ことによって安定した近似解を得ることがで きた。

図2~図6のように不安定な解が、図7~図 11のように厳密解と同じような挙動の安定 した近似解になった。また、表1をみれば分か るように計算して得られた数値も厳密解に近 い値になった。ただし、スキーム⑤は安定した 近似解は得られたが、数値は厳密解と大きな誤 差のある値になった。スキーム①~スキーム④ が、本論文で対象とした熱伝導逆問題の多倍長 計算を用いた有限要素法において、有効である と考えられる。

今後は、逆問題の数値解析に対する多倍長計 算の有効性をさらに詳しく検証していきたい。

参考文献

- 登坂宣好、大西和栄、山本昌宏:逆問題の 数理と解法 - 偏微分方程式の逆解析 - 、東京 大学出版会、(1999)
- 祝穎蓮、竹内敏己、今井仁司、有界化による熱伝導逆問題の大域的数値計算、日本応用 数理学会論文誌、Vol. 16、No. 1、(2006)、 pp. 27-36
- 3) Smith D.M., A FORTRAN Package For Floating-Point Multiple-Precision Arithmetic Transactions on Mathematical Software, 17,(1991), pp.273-283
- 4)登坂宣好、大西和栄: 偏微分方程式の数値シ ミュレーション、東京大学出版会、(1991)
- スティーブン・ウルフラム、白水重明訳、 Mathematica A System for Doing Mathematics by Computer, Second Edition, アジソン・ウエスレイ・パブリッシャー ズ・ジャパン株式会社、株式会社星雲社、 (1992)