非対称復元力特性を持つダンパ・アセンブリの振動応答

日大生産工(院) 〇中里 圭甫 日大生産工(院) 中川 穂高 日大生産工 柴田 耕一

1. 序論

車両のサスペンションを構成する要素の一つ であるダンパ・アセンブリの特性は、車両の動的 性能上、極めて重要である。ダンパ・アセンブリ を構成する各要素の多くは、入力荷重による応答 の振幅及び周波数に対して非線形な特性を示す。 また、これらの要素の中には、実装状態において、 そのストローク方向に対して非対称な特性を示 すものもある。

ダンパ・アセンブリの特性を解析する上では、 上記のような個々の構成要素の特性を考慮する ことは必要不可欠である。従って、車両動特性の 開発段階において、個々の構成要素の特性を反映 し、ダンパ・アセンブリの動特性を容易に予測で きる手段を構築することは、非常に有用である。 本論では、これらの個々の構成要素を組み合わせ たダンパ・アセンブリの非線形振動解析モデル化 手法を構築することを目的とする。

従来のべき関数型復元力モデルを用いた等価 線形系解析手法を非対称復元力特性へ適応させ る新たな手法を提案し、ダンパ・アセンブリの1 自由度系及び多自由度系非線形解析モデルを構 築した。それぞれの応答計算値と実験結果とを比 較し、応答計算値を初期の過渡応答から定常応答 まで実験値に対し精度良く求めることができた。 このことにより、本モデル化手法の妥当性を検証 することができた。

2. 解析手法 2.1 べき関数型履歴系解析手法(PFT-HYS法)

一般に強制外力(加速度 ÿ)が作用する場合の 1 自由度系の運動方程式は質点の質量を*m*、変位を *x*、復元力を *f*(*x*, *x*)とすると次式で表せる。

$$m\ddot{x} + f(x, \dot{x}) = -m\ddot{y} \tag{1}$$

(1)式を無次元化すると次式となる。

$$\frac{d^2 X}{d\tau^2} + F(X, \dot{X}) = -\frac{d^2 Y}{d\tau^2}$$
(2)

$$\begin{pmatrix} X = x / x_s, X_0 = x_0 / x_s, \omega_s^2 = F_s / (x_s \cdot m), \\ \eta = \omega / \omega_s, \tau = \omega_s t, k_s = F_s / x_s, Y = y / x_s \end{pmatrix}$$

 $F(X, \dot{X})$:無次元化した復元力 x_s, F_s :線形限界における変位と復元力 ω_s :線形限界における固有円振動数 x_0 :変位振幅

ソフトばねタイプ・モデルの算出式は次式を用いる。
骨曲線 :
$$F(X, \eta) = kX^{\alpha}$$
 (3)

加力本線:
$$F(X,\eta) = 2k \left\{ \frac{1}{2} (X_0 + X) \right\}^{\alpha} - k X_0^{\alpha} (4)$$

減力本線:
$$F(X,\eta) = -2k \left\{ \frac{1}{2} (X_0 - X) \right\}^{\alpha} + kX_0^{\alpha} (5)$$

(3) ~(5) 式の α, k は、加力試験により関数化する
ことによって得られた履歴ループの頂点
 $F_0(X_0, \eta)$ 、履歴ループの囲む面積 $G_0(X_0, \eta)$ を
用いて、次式から求めることができる。

$$\alpha(X_{0},\eta) = \frac{4F_{0}(X_{0},\eta)X_{0} - G_{0}(X_{0},\eta)}{4F_{0}(X_{0},\eta)X_{0} + G_{0}(X_{0},\eta)} \left(6\right)$$

$$k(X_{0},\eta) = \frac{F_{0}(X_{0},\eta)}{X_{0}^{\alpha}}$$

(6)式で表せる $\alpha(X_0,\eta),k(X_0,\eta)$ を(3)式~(5) 式に代入することにより、変位振幅および周波数 に依存した復元カループを逐次定義できる。この 復元カループを直接、(2)式に代入し運動方程式 を解くことをべき関数型履歴系解析手法という。

2.2 ダンパ・アセンブリ多自由度系解析モデル 各構成要素(ダンパ・ユニット・スプリング・マウ ント・ロアブッシュ・シートラバー)をそれぞれモデ ル化し、構築したダンパ・アセンブリの4自由度系モ デルを Fig.1に示す。

これらのモデル図の各質点に対する自由体図 から、質点 m_2 に外力が一切かからないものとし (F=0)、運動方程式を立てると(7)式のようにな る。

$$\begin{split} m_{2}\ddot{x}_{2} + c_{2}(\dot{x}_{2} - \dot{x}_{1}) + c_{3}(\dot{x}_{2} - \dot{x}_{3}) \\ &+ k_{3}(x_{2} - x_{3}) + k_{2}(x_{2} - \dot{x}_{1}) = -m_{2}\ddot{y} \\ m_{1}\ddot{x}_{1} + c_{1}(\dot{x}_{1} - \dot{x}_{0}) - c_{2}(\dot{x}_{2} - \dot{x}_{1}) \\ &+ k_{1}(x_{1} - x_{0}) - k_{2}(x_{2} - x_{1}) = -m_{1}\ddot{y} \\ m_{0}\ddot{x}_{0} + c_{0}\dot{x}_{0} - c_{1}(\dot{x}_{1} - \dot{x}_{0}) + k_{0}x_{0} \\ &- k_{1}(x_{1} - x_{0}) - k_{4}(x_{3} - x_{0}) = -m_{0}\ddot{y} \\ m_{3}\ddot{x}_{3} - c_{3}(\dot{x}_{2} - \dot{x}_{3}) + k_{4}(x_{3} - x_{0}) \\ &- k_{3}(x_{2} - x_{3}) = -m_{3}\ddot{y} \end{split}$$
(7)

2.3 動的履歴則(Fig2)参照

(I)初期履歴において、力-変位関係は線形とする。変位の絶対値が初めて線形範囲(|X|≤1)をこえる場合、力-変位関係は骨曲線①で与えられる。

- (Ⅱ)骨曲線上で変位振幅が折り返す場合、今折り 返した点から次に折り返す点までの時間で 求まる周波数を新しい周波数として用いる。 そして、力-変位関係は新しい周波数の骨曲 線②に対応した履歴本線(減力本線)に沿っ て、折り返した点Aと同じ変位振幅の②線上 の点Bの対称点Cを目指して進むものとす る。また、対称点Cに到達したときは、骨曲 線上を進む。
- (Ⅲ)履歴本線上で対称点に到達する前に折り返 しがある場合(点E)、新しい周波数(④線)を 求めて、その骨曲線上の元の折り返し点Dと 同じ変位振幅の点Fを目標点として減力支 線に沿って進むものとする。目標点Fに到達 したときは、新しい周波数の骨曲線上を進む。
- (IV)履歴本線から入った1回目の履歴支線上で 目標点に到達する前に折り返し点がある場 合(点G)、新しい周波数(⑤線)の点 a と点 b の上に立つ加力本線の元の折り返し点Eと 同じ変位振幅の点Hを目標点として加力支 線に沿って進む。目標点Hに到達したときは、 加力本線上を新しい周波数の目標点bを目指 して進む
- (V)履歴支線上でさらに折り返す場合(点I)、1 つ前の支線E-Fの代わりに、新しい周波数 (⑥線)に対応した支線E-Jを考え、元の折 り返し点Gと同じ変位振幅上の点Kを目指 して進む。
- (VI)以後の力-変位関係は(Ⅱ)~(V)のくりかえ しである。

6

X

Fig.1 Four-degree-of-freedom-system-model of damper assembly

F: 無次元化した復元力、X: 変位、X₀: 変位 振幅、 $\boldsymbol{\omega}$:円振動数、 $\boldsymbol{\omega}_s$:線形領域における固 有振動数、 \boldsymbol{F}_s :線形限界における荷重、 \boldsymbol{x}_s :線 形限界における変位

(Ⅲ)

D

(IV)

(VI)

3

2

4

X

X

Fig.2 Hysteretic rules

3. 解析結果

ダンパ・アセンブリを1自由度系及び4自由度 系でそれぞれモデル化し、実験から得られた入力 変位を用いた応答計算を行った。そして、これら の計算結果と実測値との比較により、それぞれの モデルの精度検証を行った。ダンパ・アセンブリ の変位振幅の時系列解析結果を Fig.5 に、復元力 の時系列解析結果を Fig.6に、履歴ループを Fig.7,8 に示す。また、1自由度等価線形系解析と履歴解 析の変位振幅の時系列解析結果、復元力の時系列 解析結果、履歴ループの比較を Fig.9~12 に示す。

ここで、Fig 中の実線は実測値、点線は1自由 度等価線形系解析結果、一点鎖線は4自由度等価 線形系解析結果、破線は1自由度履歴系解析結果 を示す。

Fig.5,6 より、時系列での比較では、1 自由度系、 そして4自由度系においても、その応答計算結果 が、各々の変位振幅及び周波数において、加振初 期の過渡状態から定常まで、実測値に対して精度 良く求められている。

履歴ループの比較から、Fig.7,8で分かるように、 両方のモデルとも過渡から定常まで精度良く求 められている。

また、特に加振初期の過渡状態においては、ダ ンパ・アセンブリのストローク変位・復元力とも に1自由度系解析に比べ4自由度系解析のほう がより計算精度が高いと言える。

Fig.9~12より、履歴系解析手法でも等価線形系 解析手法と同様に加振初期の過渡状態から定常 まで、実測値に対して精度良く求められている。

Fig.4 Hysteresis loop for damper lower rubber bushing (0.5Hz , ± 1 mm)

Fig.6 Restoring force waveforms(0.25Hz, ±10mm)

Restoring force waveforms(0.5Hz ,±2.5mm) Fig.10

Hysteresis loops (0.5Hz, ±2.5mm) Fig.11

Fig.12 Hysteresis loops (0.5Hz, ±2.5mm)

4. 結論

本論文では、車両の動特性(乗り心地、ハンド リング性能)に影響するダンパ・アセンブリの非 線形振動特性(ばね定数、減衰係数)を求めるモ デル化手法として、従来のべき関数型復元力モデ ルを用いた等価線形系解析手法に対し非対称復 元力特性のモデル化手法を加えた新たな手法を 提案し、モデル化した。そのモデルによる解析結 果と実測結果の比較からモデル化手法の妥当性 を検証した。

また、非対称復元力特性のモデル化に加え、さ らに履歴解析結果と比較し、次のことが明らかと なった。

- 1) ダンパ・アセンブリの様々な変位振幅及び周 波数の加振条件において、モデル解析値と実験 値の比較から,過渡から定常まで精度良く計算 できていることが確認できた。
- 2) このことから車両用ダンパ・アセンブリの各 構成要素(ダンパ・ユニット、ダンパ・スプリン グ、ブッシュ類)の変位振幅及び周波数に依存 する非線形特性に対して、非対称復元力特性も 解析可能な新たなべき関数型復元力モデルを 用いた等価線形系解析手法を構築できたと考 える。
- 3)1自由度の履歴解析手法も加えて比較し、履歴 手法の妥当性を確かめる事ができたので、今後 多自由度履歴解析を行う基礎ができた。

過渡から定常まで再現することができたこと で、ランダム波入力に対する応答解析の見通しが 立った。今後これに続く研究では、実ランダム波 入力解析を行い検証する。

また、多自由度履歴解析を行い、実測値と計算 値の比較、検証を行う。

脚注

1) べき関数型履歴系 (PFT-HYS) Hysteresis System using the restoring force model of Power Function Type

参考文献

- 1) A.Uoi,H.Tokunaga,K.Misaji, H. Jinbo, and K. Shibata: Modeling Method for Non-linear Vibration System with Asymmetric Restoring Force, Proceeding of AVEC06, Taipei Taiwan, August.2006,pp.691~696.
- 2) 見坐地一人、加藤英樹、柴田耕一:ゴムの振動特性 に関する研究(周波数及び変位振幅依存型の非線形 振動特性)、日本機械学会論文集(C編)、59巻564号, 1993 .08, pp. 144~150.
- 3) 見坐地一人、加藤英樹、柴田耕一:車両用防振ゴム の振動特性に関する研究(非線形振動応答解析),日 本機械学会論文集(C編),60巻578号,1994.10,pp.42 ~48.
- 4) 高橋勤、笹川考義、一ノ瀬博明、柴田耕一:免震用 積層ゴムの振動特性に関する研究、日本建築学会構 造系論文集、No. 475, 1995.09, pp. 93~102.