# 離散評点 CCR モデルの図的解釈

 日大生産工(院)
 大久保
 智弘
 日大生産工(院)
 金子
 隆史

 日大生産工
 大澤
 慶吉
 日大生産工
 篠原
 正明

# 1.はじめに

近年、事業体など DMU(Decision Making Unit: 意思決定主体)の効率性を相対的に評価する手法として、DEA(Data Envelopment Analysis: 包絡分析法)が注目されるようになった。離散評点 CCR モデルでは、Excel を用い、評価ベクトルッ、uを離散的に動かすことにより相対効率値を最適化する。

本研究では、Excel を用いた離散評点 CCR モデルの計算結果に対して、手計算による図的 解釈を試みた。

#### 2. CCR モデルの LP 定式化

n個の活動それぞれについて比率尺度で効率性を測定していくが、対象になっている活動を代表的に記号 o とし  $DMU_o$  と書くことにする。以下、記号 o は1,2,...,n のどれかを指すものとする。入力につけるウェイトを $v_i(i=1,...,m)$ 、出力につけるウェイトを $u_r(r=1,...,s)$  として、その値を次の分数計画問題を解くことによって定める。

# < FP<sub>o</sub> > 目的関数

$$\max \theta = \frac{u_1 y_{1o} + u_2 y_{2o} + \dots + u_s y_{so}}{v_1 x_{1o} + v_2 x_{2o} + \dots + v_m x_{mo}}$$
(1)

 $v_1, v_2, \dots, v_m \ge 0 \tag{3}$ 

$$u_1, u_2, \dots, u_s \ge 0 \tag{4}$$

この制約式の意味は、ウェイト $v_i$ , $u_r$ による仮想的入力と出力の比をすべての活動について 1以下に抑えるということである。その上で、当核の活動の比率尺度 $\theta$ を最大化するように、 $v_i$ , $u_r$ を決める。したがって、最適な $\theta$ の値 $\theta^*$ は高々1である。

上の分数計画に対し次の線形計画(Linear Programming: 以下 LP と略す)を考える。

 $< LP_o >$  目的関数

$$\max \theta = u_1 y_{1o} + \dots + u_s y_{so} \tag{5}$$

制約式

$$v_1 x_{1o} + \dots + v_m x_{mo} = 1 \tag{6}$$

$$u_1 y_{1i} + \dots + u_s y_{si} \le v_1 x_{1i} + \dots + v_m x_{mi}$$
 (7)

$$(j = 1, ..., n)$$

$$v_1, v_2, \dots, v_m \ge 0$$
 (8)

$$u_1, u_2, \dots, u_s \ge 0 \tag{9}$$

分数計画問題  $< FP_o >$  と線形計画問題  $< LP_o >$  は同値である。

制約式

$$\frac{u_1 y_{1j} + \dots + u_s y_{sj}}{v_1 x_{1j} + \dots + v_m x_{mj}} \le 1 \quad (j = 1, \dots, n)$$
 (2)

### 3.1入力2出力

#### 3.1 解析内容

まず初めに、1入力2出力のCCRモデルについて、手計算による図的解釈を試みた。1入力2出力の例として、7支店の営業マン1人当たりの取り引数(単位:10)と売上高(単位:千万円)を表1に表す。

表 1 1入力 2 出力

| 支店   |                       | Α | В | С | D | Ε | F | G |
|------|-----------------------|---|---|---|---|---|---|---|
| 営業人数 | Χ                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 取引先数 | <b>y</b> <sub>1</sub> | 1 | 2 | 3 | 4 | 4 | 5 | 6 |
| 売上   | <b>y</b> <sub>2</sub> | 5 | 7 | 4 | 3 | 6 | 5 | 2 |

このデータの出力の各行の総和を1として正 規化し、表2のようにする。

表 2 1 入力 2 出力(正規表現)

| + r÷ |                       | ^       |         | _     | _       |
|------|-----------------------|---------|---------|-------|---------|
| 文占   |                       | А       | В       | C     | D       |
| 営業人数 | Х                     | 1       | 1       | 1     | 1       |
| 取引先数 | <b>y</b> <sub>1</sub> | 0.04    | 0.08    | 0.12  | 0.16    |
| 売上   | <b>y</b> <sub>2</sub> | 0.15625 | 0.21875 | 0.125 | 0.09375 |

| Е      | F       | G      |
|--------|---------|--------|
| 1      | 1       | 1      |
| 0.16   | 0.2     | 0.24   |
| 0.1875 | 0.15625 | 0.0625 |

次に、表 2 の出力データを基に図 1 を作成する。 LP によるフロンティア面を破線で、 3 段階評点のウェイト $\{0,1,2\}$ のフロンティア面を実線で図 1 に示す。

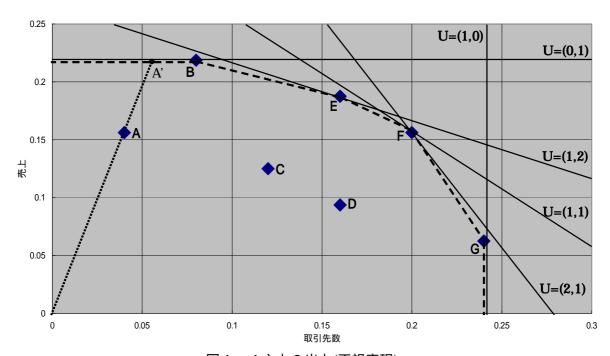



図 1 1入力 2 出力(正規表現)

## 3.2 解析方法

原点から点 A を通りフロンティア面にぶつかる直線を引く。フロンティア面とぶつかった点を A とする (図 1 参照)。点 B、点 C、点 D、点 E、点 F、点 G についても、点 A と同じように直線を引き交点を求める。

次に効率値を求める。効率値の求め方は、原

点 O から点 A までの直線 OA の長さを測る。 同じように、原点 O から点 A'までの直線 OA' の長さを測る。そして、直線 OA を直線 OA' で割る。この計算を式に表すと、

効率値 = 
$$\frac{OA}{OA'}$$
 (10)

となる。この計算を点 A、点 B、点 C、点 D、 点 E、点 F、点 G について行い、それぞれの 規化し、表4のようにする。 効率値を求める。

## 4.2入力1出力

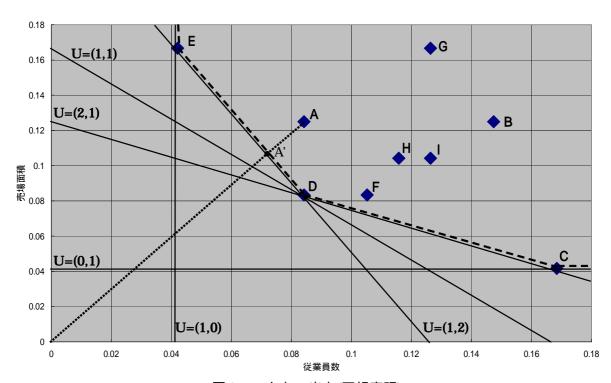
## 4.1 解析内容

次に、2入力1出力のCCRモデルについて、 手計算による図的解釈を試みた。2入力1出力 の例として、9支店のスーパーマーケットの例 を示す。入力1は従業員数(単位:10人)、入力 2は売り場面積(単位:千平方メートル)、出力 は売上(単位:億円)である。ただし、売上はす べて1億円に換算している。つまり、1億円の 売上を出すための従業員数と売り場面積であ るとする。そのデータを表3に表す。

表 3 2 入力 1 出力

| 店    |                       | Α | В | С | D | Ε | F | G | Н   | -   |
|------|-----------------------|---|---|---|---|---|---|---|-----|-----|
| 従業員数 | <b>X</b> <sub>1</sub> | 4 | 7 | 8 | 4 | 2 | 5 | 6 | 5.5 | 6   |
| 売場面積 | $\mathbf{X}_2$        | 3 | 3 | 1 | 2 | 4 | 2 | 4 | 2.5 | 2.5 |
| 売上   | У                     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1   |

このデータの入力の各行の総和を1として正


表 4 2 入力 1 出力(正規表現)

| 店       | Α           | В           | С           |
|---------|-------------|-------------|-------------|
| 従業員数 x  | 0.084210526 | 0.147368421 | 0.168421053 |
| 売場面積 x₂ | 0.125       | 0.125       | 0.041666667 |
| 売上 y    | 1           | 1           | 1           |

| D           | E           | F           |
|-------------|-------------|-------------|
| 0.084210526 | 0.042105263 | 0.105263158 |
| 0.083333333 | 0.166666667 | 0.083333333 |
| 1           | 1           | 1           |

| G           | Н           |             |
|-------------|-------------|-------------|
| 0.126315789 | 0.115789474 | 0.126315789 |
| 0.166666667 | 0.104166667 | 0.104166667 |
| 1           | 1           | 1           |

次に、表4の入力データを基に図2を作成す る。LPによるフロンティア面を破線で、3段 階評点のウェイト{0,1,2}のフロンティア 面を実線で図2に示す。



2入力1出力(正規表現)

#### 4.2 解析方法

2入力1出力の場合は、原点から点 A を結ぶ直線を引く。そして、1入力2出力と同じようにフロンティア面とぶつかった点を A'とする(図2参照)。点B、点C、点D、点E、点F、点G、点H、点Iについても、点Aと同じように直線を引き交点を求める。

効率値の求め方は、原点 O から点 A までの 直線 OA の長さを測る。同じように、原点 O から点 A'までの直線 OA'の長さを測る。そして、 直線 OA'を直線 OA で割る。この計算を式に表 すと、

効率値 = 
$$\frac{OA'}{OA}$$
 (11)

となる。この計算を点 A、点 B、点 C、点 D、点 E、点 F、点 G、点 H、点 I について行い、それぞれの効率値を求める。

#### 5.解析結果

1入力2出力・2入力1出力に対する解析結果を表5・表6に記す。

表 5 1入力2出力の効率値

| D     |        |   |        |        |
|-------|--------|---|--------|--------|
| IDMU  | Α      | В | C      | ט ן    |
| 図的解釈  | 0.7217 | 1 | 0.6918 | 0.7514 |
| LPソフト | 0.7143 | 1 | 0.7    | 0.75   |
| 離散評点  | 0.7217 | 1 | 0.7024 | 0.7514 |

| E | F | G |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

表6 2入力1出力の効率値

| DMU   | Α      | В      | С |
|-------|--------|--------|---|
| 図的解釈  | 0.854  | 0.6311 | 1 |
| LPソフト | 0.8571 | 0.6316 | 1 |
| 離散評点  | 0.8561 | 0.6332 | 1 |

| D | Е | F      |
|---|---|--------|
| 1 | 1 | 0.9241 |
| 1 | 1 | 0.9231 |
| 1 | 1 | 0.9241 |

| G      | Н      | ı      |
|--------|--------|--------|
| 0.599  | 0.7744 | 0.7586 |
| 0.6    | 0.7742 | 0.75   |
| 0.6032 | 0.7785 | 0.7586 |

ここで、図的解釈と離散評点 CCR モデルの 効率値は計算誤差内で等しい。また、LP 解は 計算誤差を考慮して、他の2つより大きい効率 値が確認できる。

#### 6. おわりに

離散評点 CCR モデルにおいて、LP によるフロンティア面は、離散評点集合を{0,1,2,3,...}と自然数に拡張したケースである。又、{0,1,2}とした場合、1入力2出力あるいは2入力1出力では、

$$s_1 u_1 + s_2 u_2 = const \tag{12}$$

$$t_1 v_1 + t_2 v_2 = const \tag{13}$$

の等高線で変数  $u_1, u_2, v_1, v_2$  の係数  $s_1, s_2, t_1, t_2$  を $\{0, 1, 2\}$ に限定した包絡線群からフロンティア面が構成されることを、図的解釈、LP ソフト、Excel 表計算の結果より確認した。

#### 参考文献

- [1] 刀根薫,経営効率性の測定と改善 包絡 分析法 DEA による ,日科技連(1993)
- [2] 伊藤圭一,離散評点 DEA の表計算,日本大学生産工数理情報工学科,平成17年度卒業論文(2006.3)
- [3] 金子隆史,大久保智弘,篠原正明,大澤慶吉,離散評点 CCR モデルの試み,第39回 日本大学生産工数理情報部会学術講演論文集 (2006.12)
- [4] 篠原正明,篠原健,離散評点 DEA のすすめ,日本オペレーションズ・リサーチ学会,春季研究発表アプストラクト集,2-C-7,pp.148-149