多孔質グラファイトカーボンを用いたオンライン酸化還元化学種変換 HPLC による ヘキサシアノ鉄酸イオンの分離

【緒言】

高速液体クロマトグラフィー(HPLC)は,分 離・検出の科学技術として最も広く利用され ている分析法の一つである.しかし,分析対象 となる物質は増加の一途をたどり,多成分混 合試料中の微量成分の分離および正確な定量 が要求されている.それに応えるため,新たな 分離機構をもつ HPLC の開発が進められてい る.最近,多孔質グラファイトカーボン(PGC) が酸化還元作用を示すことが明らかにされ, これを利用して一般に反応速度の小さい酸化 還元反応を HPLC に導入したシステムが報告 されている¹⁻³⁾.

その一つとして、2つの分離カラムの中間 に酸化または還元を行う化学種変換ユニット を組み込んだオンライン酸化還元化学種変換 HPLC が開発された³⁾.これは変換前後の化合 物の移動速度を変化させて選択的分離を目指 すものである.これまでに銅合金中の微量 Co の定量に適用して,その分離選択性の高さを 実証した³⁾.本研究はこの方法の適用の拡大 を目的とし、モデル化合物として Fe(CN)₆⁴と Fe(CN)₆³を用いて、化学種変換および分離条 件の検討を行った.

【実験】

化学種変換ユニットとしては,BTR Carbon Column (10 mm×4.6 mm i.d., 3.5 µm)を用いた. 溶離液は pH 6 に調整した 10 mM リン酸緩衝 溶液(pH 6.00) / 50 mM 過塩素酸ナトリウムを 用い,流量 0.5 ml/min で通液した.試料は 0.1 mM に調整した Fe(II), Fe(III),Co(III), Ni(II),

日大生産工 (院)			添田	直希
日大生産工	齊藤	和憲,	渋川	雅美

Pd(II), Au(I), Pt(II)の金属シアン化物錯体を用 い, サンプルループ体積は 20 μl とした.分離 カラムは L-column (PEEK 製, 100 mm×4.6 mm i.d., 5 μm)にトリメチルステアリルアンモニ ウムクロリド溶液を通液して, 陰イオン交換 性を持たせた.カラム温度は 20 とし,検出 は UV 検出器を用いて 210 nm で行った.化学 種変換ユニットは, 10 mM 亜硫酸ナトリウム を含む 10 mM リン酸緩衝溶液(pH 6.00)-50 mM 過塩素酸ナトリウムを用いて還元処理を, 500 μM 過酸化水素を含む 10 mM リン酸緩衝溶液 (pH 6.00)-50 mM 過塩素酸ナトリウムを用い て酸化処理を行った.

【結果および考察】

PGC カラムの還元処理による金属シアン化 物錯体のピーク面積の変化について検討を行 った.還元処理をした PGC カラムを組み込ん だフローシステムにより得られた各金属シア ン化物錯体のピーク面積と PGC カラムを組 み込んでいないフローシステムで得られたピ ーク面積を比較して Fig.1 に示す.還元処理し た PGC カラムを通過すると、Fe(CN)₆³⁻のピー ク面積が Fe(CN)₆⁴⁻と等しくなっている.この ことから Fe(CN)₆³⁻が Fe(CN)₆⁴⁻に還元されたと がわかった.

そこで、これを分離カラムの前段に連結し たシステムを用いて測定を行ったところ Fe(CN)⁴と Fe(CN)³⁻のいずれを注入しても保 持時間およびピーク面積が等しいピークが得 られた.オンライン酸化還元化学種変換 HPLC

Separation of Hexacyanoferrate Ion by On-Line Redox Derivatization HPLC Using a Porous Graphitic Carbon. Naoki SOETA, Kazunori SAITOH and Masami SHIBUKAWA システムにおいて,得られたクロマトグラム を Fig.2 に示す.比較のために化学種変換ユニ ットを除いたシステムでも同様の測定を行っ た.化学種変換ユニットを除いたシステムで はNi(CN)4²⁻と同じ位置に溶出するFe(CN)6³⁻が, オンライン酸化還元化学種変換 HPLC では Co(CN)6³⁻の前に溶出した.これは前段のカラ ムでは Fe(CN)6³⁻として,後段のカラムでは Fe(CN)6⁴として移動したためである.

ついで PGC カラムの酸化処理を行い,これ を用いた際の各金属シアン化物錯体のピーク 面積の変化を Fig.3 に示す .酸化処理した PGC カラムを通過すると Fe(CN)₆⁴のピーク面積が Fe(CN)₆³⁻と等しくなった.このことから酸化 処理した PGC カラムにより Fe(CN)₆⁴が Fe(CN)₆³⁻に酸化されることがわかった.酸化 処理した PGC カラムをオンライン酸化還元化 学種変換 HPLC に組み込んで得られたクロマ トグラムを Fig.4 に示す.比較のために化学種 変換ユニットを除いたシステムでも同様の測 定を行った.化学種変換ユニットを除いたシ ステムでは4分に溶出した Fe(CN)₆⁴がオンラ イン酸化還元化学種変換 HPLC システムでは 7 分に溶出した.これは前段のカラムでは Fe(CN)₆⁴として,後段のカラムでは Fe(CN)₆³⁻ として移動したためである.これにより Fe(CN)₆⁴をシステムピークから分離すること ができた.

このようにオンライン酸化還元化学種変換 HPLC によりヘキサシアノ鉄酸イオンの溶出 位置を変化させ,選択的に分離することが可 能であることが明らかになった.

【参考文献】

1) M. Shibukawa, A. Unno, T. Miura, A. Nagoya,

K. Oguma, Anal. Chem., 75 (2003) 2775

M. Shibukawa, A. Unno, Y. Oyashiki, T. Miura, A. Nagoya and K. Oguma, *Anal. Commun.*, 34 (1997)
397

3) K.Saitoh, N.Yamada, E Ishikawa, H. Nakajima,

M. Shibukawa, J.Sep.Sci, 29 (2006) 49

Fig.1 Effect of derivatization by the reduced PGC column on the peak areas of metal cyanide complexes.

Reducing agent : 10 mM Na₂SO₃

Fig.2 Chromatograms of a mixture of metal cyanide complexes obtained using the ODS-ODS system and the ODS-PGC-ODS system.

Fig.3 Effect of derivatization by the oxidized PGC column on the peak area of metal cyanide complexes .

Oxidizing agent : 500 µM H₂O₂

Fig.4 Chromatograms of a mixture of metal cyanide complexes obtained using the ODS-ODS system and the ODS-PGC-ODS system.