ゼオライト触媒を用いたバイオディーゼル燃料の合成 ゼオライト触媒の高活性化における塩酸処理の影響

日大生産工(院)	逢坂俊治
日大生産工	古川茂樹

【緒言】

バイオディーゼル燃料(BDF)は、軽油の代 替燃料として使用することができ、カーボーン ニュートラルの特性により実質な CO2 排出量 を抑えることができる。同時に排気ガスに含有 する硫黄酸化物や黒煙などの有害物質を大幅 に削減することができる。しかし、BDF は軽 油に比べ製造コストが高く、生成物の不純物の 除去が困難といった問題点を有する。現在、工 業的にはNaOHやKOHを用いたアルカリ触媒 法により BDF は製造されている。この方法は 触媒の回収が困難であり、さらに生成物の洗浄 に用いた水の廃棄処理が必要である。そこで、 本研究では低コスト化を目指し、連続的に使用 することのできる固体触媒の開発を目指した。 今回は、多孔質であり、固体酸触媒よりも反応 性の高い固体塩基触媒であるゼオライトを用 いた。ゼオライトの細孔には、原料の油脂は入 ることができないが、多量のメタノールを保持 することができると考えられ、高濃度のメタノ ール存在下での反応が期待できる。今回は、触 媒としての活性化に対する最適条件の探索を 行った。

【実験】

< 触媒調製 >

モルデナイト 5g に所定濃度の塩酸(0.5M, 1M, 1.5M, 2M, 5M)50mlを添加し、1分間超音 波処理した後、直ちに水酸化ナトリウム水溶液 で中和させ、純水での洗浄後、100 で5時間 減圧乾燥させた。その後、1M アンモニア水 50mlを添加し、24時間攪拌し、純水で洗浄後、 100 で5時間減圧乾燥させたものを、空気中、 500 で2時間焼成した。さらに、1M 水酸化 古川茂樹・岡田昌樹・鈴木庸一

ナトリウム水溶液 50ml を添加し、24 時間攪拌 させ、メタノールで洗浄後、空気中、350 で 2 時間焼成し、BDF 合成触媒とした。 < BDF 合成 >

原料油には菜種油(日清オイリオ社製、日清 キャノーラ油ヘルシーライト)を用いた。表1 に菜種油の脂肪酸組成を示した。反応は、ゼオ ライト添加量 30wt%/oil、油とメタノール添加 量のモル比1:15、反応温度60 で30分間バ ッチ式で反応を行った。生成物の分析にはガス クロマトグラフを用いて定量分析した。

Table.1. Fatty acid composition of rapeseed oil

	number of carbon : unsaturation	non composition(%)	
palmitic acid	C16:0	3.9 ~ 4.6	
stearic acid	C18:0	1.5 ~ 2.1	
oleic acid	C18:1	58.2 ~ 63.8	
linoleic acid	C18:2	18.9 ~ 21.0	

【結果及び考察】

様々なゼオライトをアンモニア水で処理し、 空気中、300 で2時間焼成後(H置換ゼオラ イト)、水酸化ナトリウムにより活性化したゼ オライト(Na置換ゼオライト)を用いて BDF を合成した。その結果を表2に示した。Si/Al

Table.2. BDF yield by using various zeolites

	Si/AI	BDF yield(wt%)		
	31/ AI	untreatment	H/zeolite	Na/zeolite
zeolite A	1	0	0	0
zeolite X	1.2	0	0	0
zeolite L	3	0	0	0
mordenaite	5	0	0	1.3
ZSM-5	(96-n)/n (n<27)	0	0	1.3

rapeseed oil:methanol molar ratio =1:15 ・ temperature 60
rapeseed oil:catalyst weight ratio =1:0.3 ・ reaction time 30min
比の高いゼオライトにおいて BDF の生成がわ

ずかに確認された。一般的に、Si/Al 比の低い

Synthesis of Biodiesel Fuels by Using Zeolite Catalyst Effect of HCl Treatment for High Activation of Zeolite Catalyst Toshiharu OSAKA, Shigeki FURUKAWA, Masaki OKADA and Yoichi SUZUKI · ゼオライト(Si/Al < 10)は親水性を示し、Si/Al 比の高いゼオライト (Si/Al > 10) は疎水性を 示す¹⁾。そのため、BDFの生成が確認されたモ ルデナイトや ZSM-5 では、油脂との親和性が 比較的高く、塩基点上に存在すると思われるメ タノールとの接触が容易であり、反応が進行し たと考えられた。そこで、ゼオライトの Si/Al 比を増加させるために、0.5M 塩酸を用いて脱 アルミニウムを行った。その結果、わずかでは あるが収率は増加した。また、アンモニア処理 後の焼成温度の影響について 300 ~ 500 で 検討したところ、500 のときに収率は大幅に 増加した。次に、酸処理濃度の影響についてア ンモニア処理後の焼成温度 500 で検討した。 図 1 にモルデナイト触媒の塩酸処理濃度と BDF 収率の関係を示した。塩酸処理濃度の増

Fig.1. Relationship between the concentration of HCl treatment and BDF yield

 \cdot rapeseed oil:methanol molar ratio =1:15 $\,\cdot\,$ temperature 60 $\,\cdot\,$ rapeseed oil:catalyst weight ratio =1:0.3 $\,\cdot\,$ reaction time 30min

加に伴い収率は増加し、1.5M 塩酸では約 14wt%に達した。しかし、1.5M 塩酸よりも濃 い処理領域では逆に収率は低下した。

次に、これらの塩酸処理したモルデナイト触 媒の XRD を測定した。その結果、酸処理に伴 う結晶構造の変化は見かけ上ほとんど確認さ れなかった。したがって、ゼオライト粒子表面 構造のみ破壊が生じているものと推察した。そ こで、塩酸処理したモルデナイトの比表面積を 測定した。その結果、塩酸処理により比表面積 や細孔内面積は減少するが、外表面積は増大し、 1.5M 塩酸処理したものでは未処理のものと比 べ約2倍の値を示した。このことは、反応場が 増大したことを示しており、BDF 収率増加の 因子の一つであると考えられる。

次に、未処理のモルデナイトと塩酸処理した モルデナイトの IR スペクトルを測定した。こ れらの触媒に顕著な差は見られなかった。次に、 それぞれの触媒に油脂を吸着させたモルデナ イトの IR を測定した。その結果を図 2 に示し た。油脂の吸着により 3200cm⁻¹~3550cm⁻¹の領

Fig.2. IR spectra of catalyst adsorbed rapeseed oil

域に - OH伸縮振動と思われる吸収が確認され、 酸処理により増大した。吸収の帰属に関しては 現在検討中であるが、塩基点への油脂の吸着が 考えられ、油脂の中間体を生成していることが 考えられる。また、メタノールと油脂の体積比 1:1 の中にモルデナイトを添加し、攪拌した ものの IR 測定を行ったところ、油脂の吸着は 確認されなかった。従って、ゼオライトの活性 点上にはメタノールが優先的に吸着され、油脂 との接触により BDF が生成されることが考え られる。

【参考文献】

1) Toru Wakihara and Tatsury Okubo, *Chemistry Letters*, **34**, (3), 276-281(2005)