ディジタル発振器の周波数安定度の研究

日大生産工(院)	仲瀬正樹
日大生産工	田中將義

1 はじめに

アナログ回路を用いた発振器は周囲の温度 や経年変化によって特性が変化する.また,周 波数を状況に応じて変化させるためには,部品 あるいは回路定数などのハードウェアの変更 を要する.一方,デジタル信号処理技術を用い て通信回路をアナログ回路からデジタルに置 き換えることにより,上記の経年変化や素子の 環境依存性がなく安定性を高めることができ, またプログラムを変更することにより,同一の ハードウェアで多種多様な機能を持ち合わす ことができる.本報告では,デジタル信号処理 技術を用いた正弦波発振器の周波数の安定化 とスプリアスレベルの低減を目的とし,シミュレーシ ョンおよびDSPを用いて検討を行った.

2 デジタル発振器の設計と評価

正弦波を離散時間で発生させ,連続時間に出 力する方法として,(1)近似式法(2)表検索法 (3)CORDIC法が考えられる.今回,それぞれの 方法で設計した発振器の周波数安定性,スプリアス レベルを評価した.

2.1 近似多項式法

(A)設計方法

近似式により正弦波を発生させる場合,テー ラー展開やマクローリン展開等の近似多項式 を使用するが,実装機器の処理容量を極力軽減 しなければならない.DSPの実装を念頭に置い た時,必要な計算精度得るには上記の設計法で は項数が増えるため計算容量が増大し実用的

ではない.

そこで次数が低くても十分な精度で得られる ミニマックス近似法を用いた.正弦波関数の取 り得る範囲-1<=sin=<1, Xの取り得る範囲を -1<=X=<1と条件を付けたとき,式(1),(2),(3) となる.

$$\sin\left(\frac{\pi x}{2}\right) \cong a_1 x + a_3 x^3 + a_5 x^5$$

$$a_1 = 1.5706268 \qquad -1 \le x \le 1$$

$$a_3 = -0.6432292$$

$$a_5 = 0.0727102 \qquad \cdot \cdot \cdot (1)$$

$$\sin\!\left(\frac{\pi x}{2}\right) \cong a_1 x + a_3 x^3 + a_5 x^5 + a_7 x^7$$

$$a_{1} = 1.570794852$$

$$a_{3} = -0.645920978$$

$$a_{5} = 0.079487663$$

$$a_{7} = -0.004362476$$

$$-1 \le x \le 1$$

$$\sin\left(\frac{\pi x}{2}\right) \cong a_1 x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9$$

$$a_{1} = 1.57079631847$$

$$a_{3} = -0.64596371106$$

$$a_{5} = 0.07968967928$$

$$a_{7} = -0.00467376557$$

$$a_{9} = 0.00015148419$$

$$\cdot \cdot \cdot (3)$$

A Study on Frequency Stability of Digitally Signal Processed Oscillator Masaki Nakase and Masayoshi Tanaka (B)近似式における次数による比較

近似多項式の項を増やすことにより,要求精 度より十分に誤差を小にすることができるが, 処理量が多くなる欠点がある.Fig.1はサンプ リング周波数5MHz,5次多項式でのスペクトル である.スプリアス・レベルが 65dB付近で出 力されている.しかし,Fig.2の7次多項式にな ると122dBまで減少し,57dBの改善ができるこ とがわかる.Fig.3の9次においては-160d B以 下と自然界ではほぼ0に等しい精度にすること ができる.以上のことから,DSPに実装し,ア ナログ出力を試みる時には,7次近似式で十分 の精度が取れることが分かった.

Fig.1 5次近似式におけるスペクトル

Fig.2 7次近似式におけるスペクトル

Fig.3 9次近似式におけるスペクトル

2.2 表検索法

(A)設計方法

表検索法はあらかじめ計算された正弦波の テーブルを読み出す方法である.この方法の場 合も詳細なテーブルを持てば高い精度の正弦 波出力することができる.しかしながらメモリ 容量が増大する欠点がある.そこで90度分のテ ーブルを持たせ,複素平面上の2,4象現では、 角度を逆側から読み,第3,4象現では極性を 反対にすることにより正弦波を表現した. (B)分割数による変化による評価

Fig.4, Fig.5, Fig.6は90度をそれぞれ16分 割,32分割,64分割した時のスペクトルの様態 である.2のべき乗分割している理由として, DSP処理の段階で位相インデックス・レジスタ のオーバーフローの処理をマスク処理だけで すむからである.Fig.4は最大で-35dBのスプリ アスが発生することがわかる.

しかしながら、分割数を細かくしていくこと で,Fig.5では-75dBと30dBの改善が見られ, Fig6の16分割では-85dB以下の雑音レベルに抑 えることが可能であった.

3 CORDICによる三角関数法

(A)設計方法

CORDICによる方法は,関数を2次元平面状 のベクトルと捉えて,ベクトルの回転を繰り返 し計算することで結果として収束した解を得 ることができる反復求解法である.この方法は, いかなる角度の計算も,近似多項式法や表検索 法と比べ精度を良くできるが,1サンプルにつ き任意の回数を繰り返し計算させるため,計算 容量が膨大になる欠点がある. (B)繰り返し回数の変化による評価

Fig.7, Fig.8, Fig.9は繰り返し回数を順に8 回,10回,14と変化させたときの10kHz正弦 波のスペクトルある.Fig.7では,-70dBでス プリアスが発生するのに対し,Fig.8では -90dBと繰り返しを2回増やすことで,20dBの 改善が見られることがわかる.Fig.9では -100dB以下の雑音レベルにすることが可能で ある.

Fig.9 繰り返し14回によるスペクトル

また、Fig.10は理想正弦波とCORDICとの回数の差による最大偏差の推移を対数表示した 図である.この図から対数比例していることが 伺える.

Fig.10 繰り返し回数の差による最大偏差

4 DSPへの実装

DSPに実装して実際の特性を評価した. D/A変換機の性能上,上限96kHzのサンプリン グ周波数,最大19kHzの周波数での実装を行った.

Fig.11, Fig.12は連続関数法と表検索法の方 式による発振のスペクトルである 実際にDSP 上に実装し,アナログに変換した正弦波をスペ クトラム・アナライザーで測定したものである. また,表1は,それぞれの信号を出力している 時のDSP使用率を表したものである.Fig.7, Fig.8のスペクトル特性はほぼ変わらないもの の,DSP使用率は近似多項式56.78%,表検索法 38.75%とおよそ1.5倍の差が出た.

表1 DSP使用率

	CPU 使用率[%]
近似多項式	56.78
表検索法	38.75

Fig.12 表検索法

5 おわりに

本報告では、デジタル信号処理技術を用いて 通信回路に使用する正弦波発振器を構成し、そ の周波数安定性を検討した.近似多項式の次数 とスプリアスレベルの関係、表検索法における分割数 とスプリアスレベルの関係を明らかにし、さらにDS Pに実装してその出力に現れるスプリアスレベルを 明らかにした.今後はDSP上で安定した高周波 発振を発生させる検討を行う予定である.

参考文献

 浜田穂積,近似式のプログラミング,培風 館, (1995), pp23-32, PP67-104
 三上直樹,デジタル処理とDSP,(1999),

pp.73 ~ 101

3)ヘースティングス,電子計算機のための近似 計算法, (1973),東京図書株式会社