日大生産工(院)	○北澤	諭				
日大生産工	菅又	信,	金子	純一,	久保田	正広

1. 緒言

Al-Mn 合金(3000 系)は,析出粒子の大きさや 分散度を調整することにより様々な軟化特性や 結晶粒度の制御が可能であり,適度な強度と成 形性を有するなどの特徴があげられる.また遷 移金属の中で Mn は,比較的 Al に対する固溶 限が大きくメカニカルアロイング(MA)によっ て固溶限が拡大することも考えられる.

B および B₄C の硬さはそれぞれ 2400HV, 4200HV と非常に硬い.また Bには、中性子を 吸収する性質があり、原子力関係の材料に使わ れている.B および B₄C は非常に融点が高く, 溶解による Al との合金化は困難である.そこで MA 法を用いた.MA 法は固相状態のまま複合 材料の作製が可能であり、特に融点差のある Al 合金とセラミックスの複合化など容易に行うこ とができる.

粉末を固化成形する方法に放電プラズマ焼結(以下 SPS)法がありパルス通電法あるいはパルス通電 加圧焼結法とも呼ばれ,固体圧縮とパルス通電焼結 技術でエネルギ制御性に優れ,均質でバラツキのな い焼結体を短時間に作製可能な新しい焼結法のひと つとして注目されている.

本研究では、純 Al 粉末に純 Mn 粉末と硬質 なB粉末あるいはB₄C粉末を添加した混合粉末 を MA処理した.得られた MA 粉末から熱間押 出しと SPS により粉末冶金材料を作製し,その 機械的性質を明らかにすることを目的とした. 2.実験方法

4. 天映月14

2.1 原料と配合組成

Table 1 に本研究の試料の配合組成, MA 条件およ び熱間押出によって作製した P/M 材の密度を示す. スタート材には,純 Al および純 Mn の粉末を用いた. 添加する B 粉末および B₄C 粉末の添加量は, 10at% および 20at%である.

2.2 MA 処理および P/M 材, SPS 体の作製

MA処理には乾式アトライター型ボールミルを用

Table 1 Composition for mechanical alloying.

Designation Mat		erial	MA time(h)	Donsity(Ma/m ³)	
Designation	matrix	compound(at%)	in time(ii)	Density(Mg/III)	
AM				2.772	
1AMB	Al-2mass%Mn	10B		2.686	
2AMB		20B	24	2.655	
1AMBC		$12.5B_4C$		2.722	
2AMBC		$25B_4C$		2.696	

Fig.1 Schematic illustration of attritor type ball mill.

Mechanical alloying of Al-Mn-B systems. Satoshi KITAZAWA, Makoto SUGAMATA, Junichi KANEKO and Masahiro KUBOTA いた. Fig.1 にボールミルの概略図を示す. 容量 5000cc のタンク内に, 直径 10mm のアルミナボール を 9.3kg および原料粉末 1 チャージ分(700g)を装入 した. タンク外部を水冷し, 酸化防止のために Ar ガ スを流しながら, インペラー回転数 120rpm で 24h の MA 処理した. また粉末の焼付き防止のミリング 助剤として,メタノールを一定時間ごとに注入した.1 チャージ当たりに注入したメタノールの総量は, 43ml である.

Fig.2 に P/M 材と SPS 体の作製工程図を示す.得 られた MA 粉末は Ar ガス雰囲気中で Al 円筒管に充 填し,直径 34mm の金型に装入し,45ton の負荷を 1分間保持する冷間プレスによって圧粉体とした. この状態では,粉末の充填密度が約70%であり,粉 末表面に吸着ガスや吸着水分を除去するために 673K で真空脱ガス処理を行った.その後100MPa, 673K で真空ホットプレスによりホットプレス体を 作製した.次にホットプレス体を空気炉で30min予 備加熱した後,押出温度723K,ダイス孔径7mm, ラム移動速度5mm/min,押出し比25:1の熱間押 出加工によって,直径7mmのP/M 材を作製した.

MA 粉末を大気中で徐々に酸化させた後, SPS 用 の φ 20 mmおよび φ 30 mm のグラファイト製の焼結ダ イスに充填する. 真空度 50 Pa 程度のチャンバー内で 一段加圧方式により SPS 焼結した. 焼結温度を 873 K, 保持時間を 3.6 ks, 加圧力を 49 MPa とした.

2.3 材料評価

MA粉末とP/M材およびSPS体の焼きなましによ る硬さの変化を調べるために 473K, 573K, 673K, 773K, 873K で 2h の等時加熱後,大気中で徐冷した 粉末と P/M 材および SPS 体の硬さを測定した. MA 粉末および P/M 材をフェノール樹脂に埋込み,研磨 用アルミナ粒子(0.3~0.05µm)を用いバフ仕上げし た面を測定面とした. SPS 体は表面をバフ仕上げし 測定面とした. 荷重 10gf でマイクロビッカース硬度 計を用いて MA 粉末の硬さを測定した. また, P/M 材および SPS 体の硬さの測定には,荷重 1kgf でビ ッカース硬度計を用いた. P/M 材の測定点は任意に 10 ポイント取り,その平均値を硬さとした. SPS 体 の測定面は,加圧面の中心から外側に向けて7ポイ ント測定しその平均値を硬さとした.

P/M 材から平行部直径 4mm, 平行部の長さ 30mm 引張試験片を加工した.常温および高温(473K, 573K)で,引張速度を 3mm/min として各条件につい て 5 本の引張試験片の平均値により引張強さと伸び を求めた. 高温引張試験は試験片が試験温度に達し た後に 0.3ksec 保持してから開始した.

MA 粉末の粒径の測定および引張試験片の破断面 を観察するために走査型電子顕微(SEM)を用いた. 引張破断面は,アセトンによる超音波洗浄の後に観 察した. MA 粉末と P/M 材および SPS 体の X 線回 折パターンのピークより構成相を調べた. MA 粉末 と P/M 材および SPS 体を 473K, 573K, 673K, 773K, 873K で 2h 等時加熱した試料の X 線回折パターンを 測定した. X 線強度を 40kV, 60mA とした CuK α 線を用いて,回折角 2 θ =20°~80°の範囲で X 線 回折した.また Al 中へ Mn および Bの固溶を調べる ために Al(311)の回折角を精密に測定した.

3. 実験結果および考察

3.1 MA 処理による粉末粒径

Fig.3に1例として(a)に MA 処理前の純 Al 粉末と (b)に MA24h 処理した 2AMB の粉末の SEM 像を示 す. SEM 観察により求めた粉末の平均粒径を Table 2に示す.

Fig.3 SEM images of powders. a)Pure Al before MA b)2AMBC MA24h

Table 2 Average particles size of powders.

material	Average particle size(µm)
Al (before MA)	68.8
AM(MA 24h)	26.8
1AMB(MA 24h)	21.7
2AMB(MA 24h)	19.8
1AMBC(MA 24h)	18.8
2AMBC(MA 24h)	12.5

MA 処理前の Al 粉末の平均粒径 68.8μ m に対して MA 粉末の粒径は 27μ m より小さい値となった. B や B₄C の添加量が多い条件でより微細な粉末となる.

3.2 硬さ試験結果

Fig.4 に MA 粉末, P/M 材および SPS 体の硬さを 示す. B₄C の添加量が多い 2AMBC が, MA 粉末で 176.9HV, P/M 材で 164.9HV, SPS 体で 179.7HV と最も高い硬さを示し, B および B₄C の添加量が多 いほど高い硬さを示した. これは, 粒径の微細化, 加工硬化の促進, Bおよび B₄C の分散強化などによ る影響と考えられる.また全ての組成において P/M 材に比べて MA 粉末の硬さが高い.これは, P/M 材 を作製する際に高温で加工したため, MA によって 生じた加工硬化が回復したためと考えられる.SPS 体と P/M 材との硬さの比較では, AM, AMB 系での P/M 材の硬さは SPS 体よりやや高い硬さを示したが, AMBC 系では同程度の硬さである.

Fig.5 に押出しまま P/M 材の焼きなましによる硬 さを示す.全ての試験温度に対して最も高い硬さを 示したのは B₄C の添加量が多い 2AMBC で,135HV 以上の硬さを示し,B および B₄C を添加していない AM に比べ 55HV 以上の硬さの増加が認められた. 2AMBC は、573K で硬さの低下が見られたが、その 他の条件では温度が上昇しても硬さの低下は認めら れず,高温加熱後も安定した硬さを示した.また AlB 系では 673K 以上で若干の硬さの低下が見られたが. AlBC 系では、573K 以上で硬さの上昇が認められた.

3.3 引張試験結果

Fig.6 に P/M 材の AM, 1AMB, 2AMB の試験温 度に対する引張強さを示す. 室温では, B の添加量 が多い 2AMB が 417MPa を示し, AM の引張強さ 255MPa に比べて約 160MPa 引張強さが向上した. また, AMB 系では 473K では, それぞれ 300MPa 以上になり, 573K では 250MPa 前後の引張強さで ある.

Fig.7 に試験温度に対する伸びを示す. 室温では, AM が 6.8%と高い伸びを示した. 1AMB の室温の伸 びは6.0%とAMの伸びに比べやや低下したがMA材 としては高い伸びを示した. 引張強さと伸びを考慮 すると、1AMB が引張強さ、伸びともに優れた材料 であると考えられる. また試験温度が上昇するとと もに全ての条件に伸びの低下が見られ、573K で 1AMBの伸びは 2.0%, 2AMBの伸びは 1.2%低い伸 びを示した. Fig.8 に1 例として常温と 573K の1 AMBの引張破断面形状を示す.常温引張試験片では 破断面に直径20μm程度の大きなくぼみが観測され た. これは, MA 粉末の比較的大きな粒径で破断し たためと考えられる. なお全体として凸凹があり延 性的な破面が観測された.573Kの高温引張試験片の 破断面では常温のような大きなくぼみは見られず, 常温に比べて平滑で脆性的な破断面が観察された.

3.4 X 線回折結果

Fig.9にX線回折結果の1例として試験温度で焼

Fig.6 Tensile strength of P/M materials at various temperatures.

Fig.7 Elongation of P/M materials at various temperatures.

きなましした 2AMBの MA粉末の回折ピークを示す. MA 粉末したままの粉末と 473K, 573K で焼なまし た粉末で Mn のピークのみ検出された. 673K, 773K 焼なました粉末では Mn, MnB₂, Al₆Mn のピーク, 873K で焼なました粉末では Mn, MnB₂, Al₆Mn, AlB₂のピークが検出された.

Bの添加した MA 粉末で Bのピークが検出されな かったことに対しては、本実験で使用した B 粉末は、 アモルファス相の B 粉末を用いたため、X線回折で は B ピークが現れないためと考えられる. MA した ままの粉末の母相の Al 格子定数を回折角の精密測定 によって算出した. Fig.10 に示すように純 Al の格子 定数が 4.0494nm に対して 1AMB は 3.8567nm、 2AMB では 3.83491nm と純 Al の格子定数と比べ小 さい. これは、MA によって B 原子が Al 中に強制固 溶したことを示す. なお格子定数の値が小さくなっ たことより B は置換型として固溶したと考えられる.

4. 結言

- (1)Bおよび B₄C の添加量が多いほど MA 粉末のサイズは細かくなった.
- (2)2AMBCが室温で164.8HVと最も高い硬さを示した.BおよびB4Cの添加量が多いほど硬さは加した.またB4Cの添加した材料は673K以降硬さが上昇した.
- (3) 押出したままの P/M 材で 2AMB が室温で
 417MPa と最も高い引張強さを示した.また高温
 では伸びは低下した.
- (4)573Kより高い温度で焼きなまししたBを添加した MA 粉末は MnB₂, Al₆Mn および AlB2 のピークが検出された.
- (5)B を添加した MA24h の粉末では B の一部が Al 中に強制固溶した.

Fig.8 SEM images of tensile tested 1AMB. a) RT b)573K

Fig.10 Lattice parameter of MA powders.