機能的近赤外分光装置(fNIRS)を用いた 作業負荷時の高次脳機能計測

日大生産工(院)	○柳沼	健	日大生産工(院)	小島	崇	日大生産工	綱島	均
日大生産工	丸茂	喜高	日大・医学	塩沢	友規			

1. 緒言

現在多くの人が、自動車・航空機・鉄道など の交通手段を利用している.これらの交通手段 は人間により運転が行われるため、ヒューマン エラーによる事故が発生してしまう.そのため 運転者の運転作業による負荷を、軽減し支援す ることで安全を確保する様々な技術の開発・実 用化が進められてきた.例を挙げると、自動車 における、前車と自車の車間距離を一定に保つ ACC(Adaptive Cruise Control)、航空機における AFCS(Automatic Flight Control Systems)、鉄道に おけるATS(自動列車停止装置)などがある.

これらの支援システムによって,運転者への ワークロードは軽減される.しかし,運転者の 運転への集中力の低下などにより,予期せぬ事 故が引き起こされる可能性も考えられる.よっ て運転者を支援し,なおかつ集中力を低下させ ないための適切な負荷を与える必要がある.現 在,様々な生体反応からワークロードの評価が 行われ,運転支援システムが研究・開発されて いる.

運転を行う際運転者は、知覚・認知・判断を 連続して行い運転をしている⁽¹⁾.情報を目や耳 などの感覚器から受けとり、集めた情報から判 断を行ったうえで脳から操作の指令を出してい る.つまりは、運転のプロセスである知覚・認 知・判断は脳活動によるものと考えられる.こ のような知覚・認知・判断の情報に基づいて行 動を計画し実行する脳の論理的な思考を、高次 脳機能と呼ぶ⁽²⁾.そこで脳血流から脳機能の計 測を行うことができる、機能的近赤外分光装置 (fNIRS)を用いて実験を行う.その際、ワーク ロードを評価するために、負荷に対する脳活動 が計測しやすい課題として、暗算による負荷を 用いる.

そこで本研究では脳機能計測による客観的評価と,被験者自身の主観的評価によりワークロードを評価し,その内容と結果について述べる.

2. 機能的近赤外分光法

脳機能を脳血流から計測する技術として,機能的磁気共鳴画像(fMRI)と機能的近赤外分光法(fNIRS)がある.fMRIは計測中に体動制限があり,また時間分解能も低い.一方でfNIRSは体動制限が少なく,被験者に自然な状態で実験が行える.また時間分解能が高いので,ワークロードの違いによる脳血流の,時間による変化を計測することが可能である.

Fig.1 Diagram of Near-Infrared Spectroscopic Measurement

図1に示すように近赤外光を照射することで 脳内の血流動態変化から脳活動を検出する装置 である.血流動態の変化は,近赤外線を吸収し やすいoxy-Hbとdeoxy-Hbの量の変化によって計 測する.本研究ではこのfNIRSを用いて脳活動を 検討する.

3. 暗算課題時の脳機能計測

3.1 ワークロードの設定

作業負荷時の高次脳機能計測として暗算課題 を用いた.暗算課題は先行研究⁽³⁾をもとに,論 理的思考を必要とする複雑な計算(難易度高) と,そうでない計算(難易度低)で以下のように 設定した.

難易度低タスク:1桁の繰り上りの無い足し算 難易度高タスク:小数点の引き算と割り算 (例) 234÷(0.61-0.35)

Measurement of Higher Brain Function with Workload by using functional Near-Infrared Spectroscopy(fNIRS)

Takeru YANAGINUMA, Takashi KOJIMA, Hitoshi TSUNASHIMA, Yoshitaka MARUMO and Tomoki Youke SHIOZAWA

3.2 実験方法

暗算課題を作業負荷として,脳機能計測を行った. 実験のデザインを図2に示す.実験はタスクーレ ストの順番で,1セットをタスク60秒とレスト30 秒で難易度低-難易度高の順番(180秒)で三回 繰り返し,合計540秒行った.

Ta I	.sk	Rest	Task H	Rest	Task L	Rest	Task H	Rest	Task L	Rest	Task H	Rest
6	0	30	60	30			_					
5	5	S	S	S			T	ask l	LL	.ow c	liffic	ulty
							T	ask l	ΗI	low o	diffic	culty

Fig.2 The block design of the experiment

図3に実験風景を示す.タスク時は紙面に印刷した問題を記入によって解答してもらい、レスト時には紙面に印刷した十字を見てもらい、開眼安静として、できるだけリラックスしてもらった.

Fig.3 Situation of Experiment Mental Arithmetic

被験者は健康な20代女性と男性,各1名とした.図4 のように,7×3の32チャンネルの光ファイバを配置し て前頭部の脳血流変動を計測した.

Fig.4 Position of Optical Fibers and Channels

Fig.5 Hb Concentration Change due to Neural Activity⁽⁴⁾

Fig.6 Hb Concentration Changes in Frontal during Operation

3.3NASA - TLXによる作業負荷の評価

本実験では、暗算によるワークロードをfNIRS による客観的評価との相関を図るために日本版 NASA-TLX⁽⁵⁾により、被験者のメンタルワーク ロードの測定を試みた.NASA-TLXは精神的要 求、身体的要求、時間的要求、作業成績、努力、 フラストレーションの6つの尺度から構成され ている.被験者はワークロードを評価する前に、 自分がその作業を遂行する際のワークロードの 要因として、どちらがより重要と思われるか、 という基準で尺度の重要度を一対比較する.

15回の一対比較の判断の中で何回選択された かが各尺度の重みとなる.作業のワークロード を評価する際には,被験者は6つの尺度ごとに両 極端の間に引かれた線分の中の適当な位置に印 をつける.

印の位置を0~100の評価として読み取り,こ れに一対比較によって定められた尺度ごとの重 みをかけて平均したものがWWL得点である.

3.4 計測結果

一般に、脳が賦活する際のoxy-Hbとdeoxy-Hb は図5のような傾向をとる.図6に前頭部の全チ ャンネルの計測結果を示す.傾向として左右外 側部で暗算課題とともに、oxy-Hbが上昇し deoxy-Hbが減少しており、この結果から暗算課 題に関して脳が賦活していることがわかる.し かしfNIRSの信号は、血圧変動・心拍・体動変化 の影響や、測定装置のノイズなど脳活動に由来 しない信号も含むため、これらを分離する信号 処理が必要になる.

- 4. 多重解像度解析による 脳血流変動の分解と再構成
- 4.1離散ウェーブレット変換による 多重解像度解析

ウェーブレット変換⁽⁶⁾は、マザーウェーブレ ットと呼ばれる小さな波ψ(t)を平行移動、伸縮 させて解析したい波形S(t)の局所的な様子を表 し、これを元に波形を解析していくものである. 離散ウェーブレット変換は次式で与えられる.

$$D_{m,n} = \int_{-\infty}^{\infty} S(t) \psi_{m,n}(t) dt \qquad (1)$$

通常,離散ウェーブレット解析の2進格子配置 は,正規直行となるように選ばれる.これによ り,原信号の完全な再生が冗長なしに可能にな る.多重解像度解析(MRA: multi-resolution analysis)は,離散ウェーブレット変換を用いて 信号を階層構造に分解するものである.対象の 波形S(t)をいくつかの近似成分(低周波数成分) と詳細成分(高周波数成分)に分解する.レベ ルJにおける信号の詳細成分は

$$d_m(t) = \sum_{n=-\infty}^{\infty} D_{m,n} \psi_{m,n}(t)$$
 (2)

となるので,原信号*S*(*t*)は,次のように表現できる.

$$S(t) = a_j(t) + \sum_{m=1}^{j} d_m(t)$$
 (3)
ここで、 d_m は詳細成分、 a_j 近似成分である

4.2暗算課題に関する信号の抽出

暗算課題に関する信号を抽出するために,図6に 示した生のデータに多重解像度解析にかけて再構 成した.タスク関連の変化が顕著であった27チャン ネルのoxy-Hbの多重解像度解析の結果を図7に示 す.暗算時,非暗算時の反復が90秒であるので,d9 成分がタスクに関連する変動となる.ここではタス クに関連するd8・d9・d10を加算して信号を再構成 した.

再構成した信号(32チャンネル)を図8に示す. タ スクに非常に関連した結果であることがわかる.ま た,難易度低と難易度高の暗算課題遂行時の脳血流 では,難易度高の暗算のほうが賦活の度合いが大き いことが見られる.

Fig. 7 Decomposition of oxy-Hb in Channel 27

Fig.8 Reconstructed fNIRS Signal

4.2 NASA - TLXとfNIRS信号

今回の実験で得られたWWL得点を図9に示 す.この結果から難易度の低い暗算よりも,難 易度の高い暗算に対するワークロードのほうが 高いことがわかる.図8に示したfNIRSから得ら れた信号を再構成した解析結果と,図9に示した NASA - TLXにより得られたワークロード得点 を比較すると,fNIRSにより得られた信号では, 難易度低と難易度高の暗算課題遂行時では,難 易度高の暗算のほうが賦活の度合いが大きいこ とが見られた.また,NASA - TLXにより得ら れたワークロード得点は難易度の低い暗算課題 よりも,難易度の高い暗算課題のほうがワーク ロード得点が高かった.そしてfNIRSにより得ら れた脳血流とNASA - TLXにより得られたワー クロードの間に,相関が見られた.

5. まとめ

作業負荷時の高次脳機能を計測するために、 fNIRSを用いて暗算課題中の脳機能計測を行っ た.暗算の難易度によって脳の活動が違うこと が確認でき,難易度低よりも難易度高の問題の ほうが賦活の度合いが大きかった.これにより、 知覚・認知・判断の情報に基づいて行動を計画 し実行する脳の論理的な思考である、高次脳機 能計測が可能であることが示唆された.また主 観的評価法であるNASA-TLXを用いて作業負 荷を計測を行った.その結果、fNIRSを用いて計 測できた脳活動の結果との相関を得ることがで きた.この結果から、fNIRSより得られた脳血流 から、ワークロードを評価することができる可 能性があることが示唆された.

今後,暗算課題や,それ以外の高次脳機能を 必要とする実験と作業負荷の関係について,被 験者数を増やすことや,fMRIや血圧,心拍,脳 波との同時計測を行い,脳血流変動の生理学的 意味について検討する必要がある.

Fig.9 Workload evaluation by NASA-TLX

参考文献

 (1) 江部和俊,大桑雅幸,稲垣大:ドライバの視聴覚認知に伴う負担度評価,豊田中央研究所 R&Dレビュー, Vol.34, No.3, (1999)

(2) 鈴木, 酒田:高次脳機能の生理学, 医学書院,(1988)

(3) 川島隆太:高次脳機能のブレインイメージ ング,医学書院, (2002)

(4) S. A. Huettel, A. W. Song and G. McCarthy: Functional Magnetic Resonance Imaging, Sinauer Associate, Inc. (2004)

(5) 芳賀繁,水上直樹:日本語版NASA-TLXによるワークロード測定,各種室内実験課題に対するワークロード得点の感度,人間工学,32巻2号,71-79(1996).

(6) I. Daubechies: Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, Vol. 41, No. 7, p. 909-996 (1988)