移流拡散方程式への Tangent 変換 CIP 法の適用性

1 はじめに

連続体モデルとしての流れの数値シミュレーションの課題は,移流方程式の安定かつ高精度近 (似スキームの構築である.そのスキームの一つと して CIP法 (Cubic Interpolated Propagation Method)が存在している¹⁾. CIP法の特徴は,物 理量のみならず微分量をも独立変数として用い ることにより,補間精度を向上させていることに ある.固体・液体・気体の三態の統一解法として, また圧縮性,非圧縮性流体を統一的に扱える手法 として,これまで流体力学をはじめ様々な分野で 応用され成果を上げている.しかし,このCIP法 の適用性に関する考察は少ない.

本論では,まず CIP 法の基本的な考えを示し た後,2次元の非定常移流拡散方程式に対して同 手法を適用し,2つの例について数値計算を行う. また,長い時間ステップでの計算結果について, スキームの適用性を検証する.

2 CIP 法基礎概念

2.1 CIP法

移流方程式

$$\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = 0 \quad (u = const > 0)$$
(1)

の解はよく知られているように,次式で表される. f(x,t) = f(x-ut,0) (2)

これは初期(t < 0)のプロファイルが速度 u で移 動することを表している.初期に図1の実線のような物理量のプロファイルがあるとする.u>0 で時間 Δt 移動するとき,厳密解は破線のように なるはずである.しかし,データは離散的に,格 子点上でしか得られないので,セル内のプロファ イルを単純に補間してしまうと点線のようにな り,厳密解からはズレたものになってしまう.そ こで式(1)を微分すると

$$\frac{\partial g}{\partial t} + u \frac{\partial g}{\partial t} = 0 \qquad (g = \partial f / \partial x)$$
(3)

となり, g もまた u で伝播することを表している. 従って,物理量同様,微分量も移流させれば,格 子点上では移動後のプロファイルに図の太矢印
 日大生産工(学部)
 家塚 史仁

 日大生産工
 登坂 宣好

のような制限が加わり ,メッシュ間のプロファイ

ルが移動前に近くなることになる. CIP 法では格子点 *i* – 1,*i* の間のプロファイルを 次の3次関数で補間する.

$$F_{i}(x) = a_{i}(x - x_{i})^{3} + b_{i}(x - x_{i})^{2} + c_{i}(x - x_{i}) + d_{i}$$
(4)
4 つの未知係数 $a_{i}, b_{i}, c_{i}, d_{i}$ は関数 $F_{i}(x)$ が格子点

上で与えられた値 *f_i, f_{i-1}* 及び微分値 *g_i, g_{i-1}* を取 るという次の条件

$$F_{i}(x_{i}) = d_{i} = f_{i},$$

$$\frac{dF_{i}(x_{i})}{dx} = c_{i} = g_{i},$$

$$F_{i}(x_{i-1}) = -a_{i}\Delta x^{3} + b_{i}\Delta x^{2} - c_{i}\Delta x + d_{i} = f_{i-1},$$

$$\frac{dF_{i}(x_{i-1})}{dx} = 3a_{i}\Delta x^{2} - 2b_{i}\Delta x + c_{i} = g_{i-1},$$
(5)

から未知数が次のように決定できる.

$$a_{i} = \frac{g_{i} + g_{i-1}}{\Delta x^{2}} - \frac{2(f_{i} - f_{i-1})}{\Delta x^{3}},$$

$$b_{i} = \frac{3(f_{i-1} - f_{i})}{\Delta x^{2}} + \frac{2g_{i} + g_{i-1}}{\Delta x}.$$
(6)

ただし c_i , d_i は式(5)で既に与えてある.この結果, 次の時刻での値は,このプロファイルを $u\Delta t$ だけ 遡ったものであるから

$$f_i^{n+1} = a_i \xi^3 + b_i \xi^2 + g_i^n \xi + f_i^n,$$

$$g_i^{n+1} = 3a_i \xi^2 + 2b_i \xi + g_i^n.$$
(7)

ここで, $\xi = -u\Delta t$.なお,u < 0の場合にはi-1を i+1に, $-\Delta x \epsilon \Delta x$ に置き換えればよい.

Applicability to Advection-Diffusion Equation of CIP Method with Tangent Conversion

Fumihito IETSUKA and Nobuyoshi TOSAKA

2.2 Tangent 変換 CIP 法

CIP 法でも十分精度のよい計算が行えるが,物 体や液体の表面等の記述にはまだ不十分である. そこで関数変換の方法を用いる.

Tangent 関数変換では式(1)でのfを解く代わ りに

$$H(f) = \tan(\pi(f - 1/2))$$
 (8)
の変換を行う. H についても式(1)と同じ式が得
られることはすぐに分かる.そこで, f の代わり
に H を未知数として式(8)を使い,必要に応じて
この結果を逆変換し f を求める.この変換は物質
の境界面を記述する密度関数のように, 0 または
1の指標で表される場合には非常に有効である.

3 2次元非定常移流拡散方程式

次の 2 次元移流拡散方程式へ CIP 法を適用する.

$$\frac{\partial f}{\partial t} + \frac{\partial (uf)}{\partial x} + \frac{\partial (vf)}{\partial y} = \kappa \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right)$$
(9)

ここで, κ は拡散係数である. 左辺を少し変形し *∂f ∂f ∂f*

$$\frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} = -\left(f \frac{\partial u}{\partial x} + f \frac{\partial v}{\partial y}\right) + \kappa \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right) \equiv G$$
(10)

としておく. CIP 法では空間微分も必要になる. $\partial f \quad \partial f \quad \partial u \quad \partial v$

$$\frac{\partial f_x}{\partial t} + u \frac{\partial f_x}{\partial x} + v \frac{\partial f_x}{\partial y} = G_x - f_x \frac{\partial u}{\partial x} - f_y \frac{\partial v}{\partial x}, \quad (11)$$
$$\frac{\partial f_y}{\partial t} + u \frac{\partial f_y}{\partial t} + v \frac{\partial f_y}{\partial t} = G_x - f_x \frac{\partial u}{\partial x} - f_y \frac{\partial v}{\partial x}, \quad (12)$$

 $\frac{\partial t}{\partial t} + u \frac{\partial x}{\partial x} + v \frac{\partial y}{\partial y} = G_y - f_x \frac{\partial y}{\partial y} - f_y \frac{\partial y}{\partial y}.$ (12) ここで, x, y の下付き添え字は各量での偏微分を

CIP 法では移流項と非移流項を分離して解く. すなわち,まず移流相を計算し

$$(f^{n}, f_{x}^{n}, f_{y}^{n}) \rightarrow (f^{*}, f_{x}^{*}, f_{y}^{*})$$
と中間の値を求める.次に非移流相で
 $(f^{*}, f_{x}^{*}, f_{y}^{*}) \rightarrow (f^{n+1}, f_{x}^{n+1}, f_{y}^{n+1})$
を求め,次のステップの値とする.
移流相としては
 $\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} = 0,$
 $\frac{\partial f_{x}}{\partial t} + u \frac{\partial f_{x}}{\partial x} + v \frac{\partial f_{x}}{\partial y} = 0,$
 $\frac{\partial f_{x}}{\partial t} + u \frac{\partial f_{x}}{\partial x} + v \frac{\partial f_{x}}{\partial y} = 0,$

(13)

であり, CIP 補間を用いて計算する.非移流相では以下の式を差分近似より求める.

$$\frac{\partial f}{\partial t} = G, \qquad \frac{\partial f_x}{\partial t} = G_x - f_x \frac{\partial u}{\partial x} - f_y \frac{\partial v}{\partial x},$$

$$\frac{\partial f_{y}}{\partial t} = G_{y} - f_{x} \frac{\partial u}{\partial y} - f_{y} \frac{\partial v}{\partial y}.$$

(14)

まず,移流相であるが,2次元空間での空間プ ロファイルは1次元同様に3次関数で補間する. この補間関数の選び方には幾つかあるが,ここで は以下のような関数を採用した(A型 CIP).

$$F_{i,j}(x, y) = C_{3,0}X^{3} + C_{2,0}X^{2} + C_{1,0}X + C_{0,0}$$
$$+ C_{0,3}Y + C_{0,2}Y + C_{0,1}Y$$
$$+ C_{2,1}X^{2}Y + C_{1,1}XY + C_{1,2}XY^{2}$$
(15)

ここで, $X = x - x_i, Y = y - y_i$.これは, 1次元CIP をそれぞれの方向に拡張しただけであり,項数が 少なくてすむので,多次元への拡張には適してい る.ここにはC, の10個の未知係数が現れるが, 格子点(i, j), (i+1, j), (i, j+1)でそれぞれ与えられ た f, f_x, f_y の値を持ち, 点(i+1, j+1)で $f_{i+1, j+1}$ の値 を持つという10個の関係を用いると,次のよう に係数が決定できる.

$$C_{3,0} = \frac{(f_{xiup,j} + f_{xi,j})}{\Delta x^{2}} - \frac{2(f_{i,j} - f_{iup,j})}{\Delta x^{3} \times sign(u)},$$

$$C_{2,0} = \frac{3(f_{iup,j} - f_{i,j})}{\Delta x^{2}} + \frac{(f_{xiup,j} + 2f_{xi,j})sign(u)}{\Delta x},$$

$$C_{1,0} = f_{xi,j}, \quad C_{0,0} = f_{i,j}, \quad C_{0,1} = f_{yi,j},$$

$$C_{0,3} = \frac{(f_{yi,jup} + f_{yi,j})}{\Delta y^{2}} - \frac{2(f_{i,j} - f_{i,jup})}{\Delta y^{3} \times sign(v)},$$

$$C_{0,2} = \frac{3(f_{i,jup} + f_{yi,j})}{\Delta y^{2}} + \frac{(f_{yi,jup} + 2f_{yi,j})sign(v)}{\Delta y},$$

$$C_{2,1} = \frac{-L}{\Delta x^{2} \Delta y \times sign(v)} - \frac{M \times sign(u)}{\Delta x \Delta y \times sign(v)},$$

$$C_{1,1} = \frac{-L}{\Delta x \Delta y \times sign(u) \times sign(v)} - \frac{N}{\Delta x \times sign(u)},$$

$$C_{1,2} = \frac{-L}{\Delta x \Delta y^{2} \times sign(u)} - \frac{N \times sign(v)}{\Delta x \Delta y \times sign(v)}.$$
(16)

$$L = f_{i,j} - f_{i,jup} - f_{iup,j} + f_{iup,jup},$$

$$M = f_{xi,jup} - f_{xi,j},$$

$$N = f_{yiup,j} - f_{yi,j}.$$
(17)

$$z z \overline{C} iup = \begin{cases} i-1 & (u \ge 0) \\ i+1 & (u < 0) \end{cases}, jup = \begin{cases} j-1 & (v \ge 0) \\ j+1 & (v < 0) \end{cases}$$
(18)

$$sign(x) = \begin{cases} 1 & (x \ge 0) \\ -1 & (x < 0) \end{cases}$$
(19)

という記号を導入した.これは*u*,*v*の正負により プログラムを場合分け(2次元ならば上流が4通 り存在する)しなくとも良いようにするためである.

非移流相は以下の差分で計算する.式(21), (22) では,式(20)でGの微分がすでに用いられている ので, G_x,G_y を $(f^{n+1}-f^*)/\Delta t$ で置き換えて計算 している.これにより,式(21), (22)ではGの微 分は必要なくなる. $f_{n+1}^{n+1} = f_{n+1}^*$

$$+ \left\{ \kappa \left(\frac{f_{i+1,j}^{*} - 2f_{i,j}^{*} + f_{i-1,j}^{*}}{\Delta x^{2}} + \frac{f_{i,j+1}^{*} - 2f_{i,j}^{*} + f_{i,j-1}^{*}}{\Delta y^{2}} \right) - \left(f_{i,j}^{*} \frac{u_{i+1,j} - u_{i-1,j}}{2\Delta x} - f_{i,j}^{*} \frac{u_{i,j+1} - u_{i,j-1}}{2\Delta y} \right) \right\} \Delta t,$$
(20)

$$f_{xi,j}^{n+1} = f_{xi,j}^{*} + \frac{f_{i+1,j}^{n+1} - f_{i-1,j}^{n+1} - f_{i+1,j}^{*} + f_{i-1,j}^{*}}{2\Delta x} - f_{xi,j}^{*} \frac{u_{i+1,j} - u_{i-1,j}}{2\Delta x} \Delta t - f_{yi,j}^{*} \frac{v_{i+1,j} - v_{i-1,j}}{2\Delta x} \Delta t,$$
(21)

$$f_{yi,j}^{n+1} = f_{yi,j}^{*} + \frac{f_{i,j+1}^{n+1} - f_{i,j-1}^{n+1} - f_{i,j+1}^{*} + f_{i,j-1}^{*}}{2\Delta y} - f_{xi,j}^{*} \frac{u_{i,j+1} - u_{i,j-1}}{2\Delta y} \Delta t - f_{yi,j}^{*} \frac{v_{i,j+1} - v_{i,j-1}}{2\Delta y} \Delta t.$$
(22)

2次元の場合にも Tangent 変換 CIP 法では, 上記の f の代わりに式(8)で変換される H を用 いることは,全く同様である.

4 数値計算例

4.1 Skew Flow 問題

図2に問題設定を示す.メッシュに対して斜め 一定方向の流れであり,常に ||u||=1 とする.

 $\kappa = 10^{-6}$ とし,20×20の同サイズの固定正方形格 子を使用する.流入境界は不連続(0 または 1)で あり,流出境界は自然境界条件($f_n = 0$)とする. 2 通りの θ (= 45°,67.5°)について,計算結果の立 面図を図 3~6 に示す.

図 3 = 45° (CIP 法)

図 4 = 45° (Tan 変換 CIP 法)

図 5 = 67.5 ° (CIP 法)

図 6 = 67.5 ° (Tan 変換 CIP 法)

4.2 Rotating Cone 問題

図 7 に問題設定を示す.初期形状が文字"C" になるよう 0 または 1 を与え,一定方向に回転 するベクトル場(*u*,*v*)=(-*y*,*x*)を与える. *κ*=10⁻⁹ とし,100×100の固定正方形格子を用いる.境 界上では常に値を 0 とする.1回転後の立面図及 び圧力図を図 8,9 に,100回転後の立面図を図 10 に示す.

図 7 (a) Rotating Cone 問題 (b) 初期状態

図 8 1 回転後(CIP 法) (a) 立面図, (b) 圧力図

(D

図 9 1 回転後(Tan 変換 CIP 法) (a) 立面図, (b) 圧力図

図 10 100 回転後(Tan 変換 CIP 法)

5 おわりに

本論では CIP 法を 2 次元非定常移流拡散方程 式に適用し,2 つの数値計算例について同手法の 適用性を検討した.

CIP 法単独では二例とも若干オーバーシュー トが起こり,また数値拡散もみられる.一方, Tangent 変換 CIP 法では,何れの問題でも境界 をシャープに捕らえオーバーシュートもない.式 (8)のように簡単な変換でこれだけの効果が得ら れることは,非常に意味が大きい.しかし,Rotating Cone 問題での長い時間ステップでの結果は, 初期形状とは全く違ったものとなった.これは Skew Flow 問題では流れの方向が常に一定であ るのに対し,Rotating Cone 問題では流れの方向 が常に回転していることが原因と思われる.

今後は,より一般的な方程式への CIP 方の適 用性を検討していきたい.

参考文献

1) 矢部孝, 内海隆行, 尾形陽一, CIP法, 森北出版, (2003). 2) Brooks, A.N., and Hughes, T.J.R., Streamline upwind / Petrov-Galelkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Meths. Appl. Mech. Engrg., 32, (1982), pp.199-259.