日大生産工(院)	内藤 丈実	日大生産工	伊藤 邦夫
(株)ツムラ	矢野 耕也	東電大(院)	山村 英紀

1. 緒言

射出成形における大きな問題は、樹脂の不均一充 填により、金型と成形品が相似形にならない、つま り転写性に欠けることである。この問題に対し、従 来は金型を削り直す等の処置を行って成形品が望み どおりの形になるようにする手段がとられているが、 これは莫大なコストがかかる。筆者らはこの問題に 対し、金型の手直しでなく、調整の容易な成形条件 の調整のみで転写性を改善することを試みた。

2. 目的

プラスチックの射出成形技術における問題として、 金型と成形品の形が同じ形にならない、つまり転写 性がなく、結果、金型の手直しをして成形品を望み どおりの形状にする処置がとられるために莫大なコ ストがかかることが挙げられる。これは金型内に樹 脂が充填する際、全ての箇所に均一に樹脂が充填さ れず、部位による熱収縮の相違が発生するためであ る。本研究ではこの問題を金型の手直しによる対応 策ではなく、手間のあまりかからない射出条件の調 整のみで高い転写性を得ることを目的とする。

東電大(院)山村氏が3次元測定を行うのに対し、本 実験では表面の凹凸を数値化しMT法によって転写 性を評価する。

- 3. 射出成形概要
- 1) 射出成形

今回使用した射出成形機は(株)山城精機製作所に より作製された縦型油圧式射出成形機である。Fig.1 に射出成形工程の概要を示す。

Fig.1 Injection molded process

部位を大別すると、樹脂投入口、スクリューが内 蔵されたヒーター、金型の3つに分けられる。実際 の射出成形工程は、まず上部の樹脂投入口に米粒大 のペレットと呼ばれる樹脂を投入することから始ま る。ペレットはスクリュー内部に落下し、ヒーター の熱により溶融し、さらにスクリューが回転するこ とにより混練される。最終的にスクリューの降下に より金型内に溶融した樹脂が射出され、成形品が出 来上がる。

2) 金型と成形品の形状

実際に成形を行った成形品の理論寸法と測定した 面を Fig.2 に示す。実際には Fig.2 のような金型と成 形品が相似形でない。金型は樹脂の流入口であるゲ ート位置が 3mm 厚部、4mm 厚部のほぼ中間に位置 している可変式で選択できるものであるが、本研究 では 4mm 厚部のゲートのみを使用した。

Fig.2 The size of a test piece

- 4. 実験、解析方法
- 1) 実験方法

L18 直交表により割り当てられた条件から実際に 縦型射出成型機を用い、一条件につき 3 回の繰り返 し成形を行う。直行表の割り当てを Table. 1 に示す。 それより作成したテストピースの Fig.2 で示した 3 面をスキャナで読み取り、画像データに変換し、そ れを RGB 分解する。RGB 分解する際には bmp2.csv を使用した。また測定装置は Fig.3 の通りである。 スキャナの CCD は中央にあり、なるべく中央に置 かないと測定誤差が出てしまうため、テストピース をある程度固定するためにスキャナに工夫をした。

Evaluation Transferability of the Injection Molded Product using the MT Methods

Takemi NAITOH, Kunio ITO, Koya YANO and Hideki YAMAMURA

Table.1 Assignment of a L18 rectangular table

			Level	
	Factor	1	2	3
Α	Screw compression ratio	S	L	
В	Screw compression zone length	S	Μ	L
С	Forming temperature pattern	1	2	3
D	Screw rotation speed	S	Μ	L
Е	Maintenance pressure	L	Μ	S
F	Compression speed	S	Μ	L
G	Metallic mold warms pattern	1	2	3
Н	Cooling time	S	М	L

Fig.3 Outline of measurement equipment

スキャナの設定は次の通りである。

Table.2 Setup of a scanner

Resolution	150dpi
Magnification	30%
Others	Default

RGB 分解されたデータのうち、ばらつきの多かった Blue のデータを用いる。厚さ毎にテストピースの縦寸法が異なるため行のデータ項目数は異なる。厚さごとの項目数を Table.3 に示す。

Table.3 Number of items

	Rank	Line
2mm	27	118
3mm	27	100
4mm	27	150

各テストピースのデータを加工し、列ごとの平均 値、標準偏差を求める。

2) 解析方法

解析には MT 法を使用する。MT 法とはパターン 認識の手法であり、正常なものと異常なものをマハ ラノビスの距離(MD)で判断し、それに品質工学の手 法を組み合わせ判定するものである。ただし、基準 となる単位空間には、安定したものを選ぶという大 前提がある。

単位空間作成

本実験の単位空間には3次元測定により導き出し た最適条件で成形したものを列数と同じ回数繰り返 し測定し、それぞれ列の平均、標準偏差を並べたデ ータを使用し逆行列法により単位空間を作成した。

分割型望目特性の SN 比の計算方法

MT 法により算出した数値を基に望目特性の SN 比の特殊な解析法である、分割型の SN 比というも のを使用し SN 比を求める。これはテストピースの 生データを繰り返し取っているため、それを全て使 い、データの精度を上げるためである。

各水準に対応する全データの2乗和Srを以下の式で 求める。

$$\mathbf{S}_{\mathrm{T}} = \mathbf{R}_{\mathrm{an}}^2 + \dots + \mathbf{R}_{\mathrm{nn}}^2$$

ー般平均の変動 S_m(平均値の効果)を以下の式で求める。ここで割る数の n は水準ごとのデータ数である (A は 27、B 以降は 18)。

$$\mathbf{S}_{\mathrm{m}} = \frac{\left(\mathbf{R}_{\mathrm{an}} + \mathbf{R}_{\mathrm{nn}}\right)^2}{\mathrm{n}}$$

行間の差の効果S行を以下の式で求める。

$$S_{\overline{17}} = \frac{\left(R_{a1} + R_{a2} + R_{a3}\right)^2 + \dots + \left(R_{n1} + R_{n2} + R_{n3}\right)^2}{3} - S_m$$

誤差変動 Seを求める。

 $\mathbf{S}_{e} = \mathbf{S}_{T} - \mathbf{S}_{m} - \mathbf{S}_{f\bar{T}}$

誤差分散 Veを求める。ここで割る数 n は自由度である(A は 18、 B 以降は 12 となる)。

$$V_e = \frac{S_e}{n}$$

SN 比 を求める。ここの n は水準ごとのデータ数 である(A は 27、B 以降は 18)。

$$\eta = 10 \times \log \frac{\frac{1}{n} (S_m - V_e)}{V} (db)$$

感度 S を求める。同様に n は水準ごとのデータ数である(A は 27、B 以降は 18)。

$$\mathbf{S} = 10 \times \log \frac{1}{n} (\mathbf{S}_{m} - \mathbf{V}_{e}) (db)$$

5. 結果

2mm 厚部の単位空間データ作成時に使用したデ ータの一部を Table.4 に示す。また、計測データの 一部を Table.5 に示す。

Table.4 Unit space data of 2mm part

		Average		Standard deviation		viation	
		1	•••	27	1	•••	27
	1	197.441	• • •	142.297	29.2165	•••	12.6901
	2	197.068		142.424	29.2548		12.7162
	•	•		•	•		
	•	•		•	•		•
	•	•		•	•		•
	118	168.492	• • •	143.771	26.4501	•••	9.62906
1							

各テストピースのデータを加工し、列ごとの平均 値、標準偏差を求めたデータを Table.5 に示す。

Table.5 Data of 2mm part

	Average		Standard deviation		viation	
	1	• • •	27	1	• • •	27
L01-1	154.797	•••	112.847	35.9351	• • •	9.48471
L01-2	159.441		124.305	31.8494		9.9469
•			•	•		•
•			•	•		•
•	•		•	•		•
L18-2	159.093		127.551	26.9428		10.1151
L18-3	159.415	•••	125.008	27.26	• • •	10.461

3 箇所全て MT 法により算出した距離データから 分割型望目特性の SN 比の研鑽方法により SN 比 、 感度 S の算出結果を Table.6~11 に示す。

Table.6 SN η of 2mm thickness

	1	2	3
А	15.62896	6.003346	
В	14.95034	19.18828	4.661065
С	12.59686	18.86923	5.315016
D	15.7398	5.569069	12.55542
Е	1.548833	11.21614	18.0919
F	17.72591	4.539417	13.05673
G	12.67159	14.6819	5.853081
Н	4.434589	13.58939	15.41246

Table.7 SN S of 2mm thickness

	1	2	3
А	34.84572	34.03326	
В	34.12954	34.69632	34.48332
С	35.00781	33.50653	34.73468
D	33.68363	34.86988	34.72085
E	30.76495	32.83245	38.01654
F	34.30661	33.96384	35.01137
G	35.05473	33.03613	35.07857
Н	33.6662	36.14918	33.20061

Table.8 SN η of 3mm thickness

	1	2	3
А	8.536801	12.79296	
В	7.07652	16.48026	10.89846
С	12.3127	14.0468	6.875609
D	15.58766	10.12829	8.362044
Е	11.06754	14.46348	6.301794
F	14.66968	10.92183	7.307553
G	17.02022	10.78792	7.922656
Н	11.80433	14.62271	7.210742

Table.9 SN S of 3mm thickness

	1	2	3
А	39.45507	38.07544	
В	38.97657	38.25888	39.09364
С	38.57229	38.74473	39.0288
D	37.38465	38.63478	40.12049
Е	38.746	39.61278	37.90404
F	38.82181	38.27976	39.22491
G	37.78151	38.16301	40.2114
Н	39.12993	37.88656	39.27137

Table.10 SN η of 4mm thickness

	1	2	3
А	14.74431	7.84097	
В	15.41972	20.5311	5.16293
С	18.56074	12.97259	5.658583
D	16.26316	5.191458	16.24739
Е	6.528741	15.00373	18.12187
F	17.66828	5.415254	15.06764
G	19.93872	15.19645	5.356523
Н	6.557192	14.40403	16.91581

Table.11 SN S of 4mm thickness

	1	2	3
А	30.86409	30.75291	
В	32.01412	30.31136	29.92707
С	31.17433	31.19605	29.97201
D	31.43808	29.83924	31.04055
Е	31.28947	30.99101	30.08012
F	31.49646	30.09122	30.75336
G	31.40924	30.75127	30.19534
Н	31.0821	31.63251	29.55991

各厚部の SN 比 、 感度 S の要因効果図を Fig.4 ~ 9 に示す。

Fig.4 Factor effect figure (2mm thickness n)

Fig.5 Factor effect figure (2mm thickness S)

Fig.6 Factor effect figure (3mm thickness n)

Fig.7 Factor effect figure (3mm thickness S)

Fig.8 Factor effect figure (4mm thickness n)

Fig.9 Factor effect figure (4mm thickness S)

6. 結言

結果で求めた SN 比 の要因効果図を使い、全結 果をまとめると Fig.10 のようになった。

Fig.10 Factor effect figure (All thickness n)

2mm、4mm は共に同様な傾向が見られるが、 3mm に関してはいくつかの条件で逆の結果が得られた。この2mm、3mm、4mm だけで判断できないため、2mm-3mm、2mm-4mm、3mm-4mm、全 データの和を加えた。最適条件は単純に全体的に見て感度の高いものを選んだ。3次元測定での最適条件との比較を行ったものを以下に示す。

Table.12 Comparison of an optimal condition

	А	В	С	D	Е	F	G	Н
This experiment	1	2	2	1	3	1	1	2
3D measurement	2	3	3	1	1	2	2	3

このように、本実験と3次元測定から求めた最適 条件はD以外すべて異なっている。この理由として は、様々なものが挙げられる。

現段階ではこれ以上の結果は求めることはできな いため、以後本実験で求めた最適条件での再現と測 定を行い検証することが必要である。

参考文献

田口玄一,転写性の技術開発,日本規格協会,(1992) 田口玄一,MT システムによる技術開発,日本規格協会,(2002) 矢野宏,品質工学計算法入門,日本規格協会,(1998)