流 通 式 超 臨 界 水 熱 合 成 法 に よ る ナ ノ サ イ ズ 微 粒 子 の 生 成 機 構 解 析

東北大	○鈴木宗之,	阮炯明,野中利之,	新井邦夫
日大生産工	陶究,	日秋俊彦	
産総研	伯田幸也,	林拓道	

【緒言】

流通式水熱合成法は、原料金属塩の急速昇 温・反応液の急速冷却が可能な為、反応時間 を厳密に制御可能であることから、超臨界領 域の特性を最大限に引き出した新たな材料創 製手法として注目を集めている。これまでに 国内外で本手法により種々の金属酸化物微粒 子の合成が多数報告されている。しかし、粒 子生成・成長機構についての詳細な解析はな されていない。実用化を視野に入れた場合、 目的とする粒子径をもった微粒子の合成条件 の予測が必要とされ、そのためには平衡論的、 速度論的な解析に基づく生成機構の解明が不 可欠である。本研究では、超臨界水中での金 属酸化物微粒子合成において、溶解度推算を 行い過飽和度を算出し、生成粒子の粒子径に 与える影響を評価し、解析を行ったので報告 する。

【溶解度計算】

本研究での溶解度の計算手法を、原料に Ni(NO₃)₂を用いてNiOの合成を行う系を例と して説明する。本系において関与する化学種 の反応平衡定数式および活量係数式、物質収 支式、電荷収支式を解くことで、任意の温度、 圧力、濃度条件における各化学種濃度を計算 した。溶解度はNiに関する溶存化学種濃度の 和として以下のように(1)式で定義し、また過 飽和度は(2)式で定義した。平衡定数データは 推算モデル ¹⁾により算出した。 S=[Ni⁺²]+[NiOH⁺]+

 $[Ni(OH)_{2}^{0}] + [Ni(OH)_{3}^{-}] + [Ni(NO)_{3}^{+}]$ (1)

Fig.1 流通式装置の概略図

【実験】

実験には、図1に示す急速昇温および急速 冷却が可能な流通式装置を用いた。実験は原 料金属硝酸塩水溶液(混合後濃度 0.01mol/kg) を 20g/min で送液し、別ラインで送液した超 臨界水 80g/min と混合することで急速昇温さ

	ZrO ₂	Fe ₂ O ₃	AlO(OH)	NiO	CuO
 溶解度[mol/kg]	10 ^{-15.67}	10 ^{-9.379}	10 ^{-6.603}	10 ^{-4.647}	10 ^{-3.234}
	10 ^{13.67}	10 ^{7.379}	10 ^{4.603}	10 ^{2.646}	10 ^{1.208}

Table1 400℃, 30MPaにおける各金属酸化物の溶解度および過飽和度

Hydrothermal Synthesis of Metal Oxide Nanoparticles by Flow-through Supercritical Water Method - Experimental synthesis and Thermodynamic analysis -

Muneyuki SUZUKI, Kiwamu SUE, Jiongming RUAN, Toshiyuki NONAKA, Kunio ARAI,

Yukiya HAKUTA, Hiromichi HAYASHI and Toshihiko HIAKI

せ反応開始とし、直接冷却および間接冷却に より反応を停止させた。反応温度は 400℃, 反応圧力は 30MPa,反応時間は 1 秒とした。 生成粒子は回収液をろ過することにより回収 した。分析には生成物の同定に XRD、転化率 の評価に ICP、粒子形態は TEM により観察し、 粒子 150 個を計測することで平均粒子径を算 出した。

【結果と考察】

Table1 に 400℃、30MPa において算出した 各金属種の溶解度、および過飽和度を示す。 Zr, Fe, Al, Ni, Cu の順に溶解度が低く、過 飽和度が大きいことがわかる。Fig.2 a)に生成 粒子の一例として NiO の TEM 像を示す。ま た、Fig.3に実験により生成した粒子の平均粒 子径と算出した過飽和度の関係を示す。図に 示すように、過飽和度の高い順に粒子径は小 さくなっており、粒子径と過飽和度には相関 がみられ、図中の曲線の傾向を示した。また、 過飽和度が10^{2.646}と低く、粒子径が19nmと 大きな NiO(Fig.2a)においても、アルカリとし て水酸化カリウムを添加し、溶解度を下げ過 飽和度を 10^{7.246} と高い条件を設定し、実験を 行ったところ、平均粒子径 3.4nm(Fig.2b)とシ ングルナノ粒子が生成し、Fig.3の曲線の傾向 と一致した。また、転化率は、アルカリ無添 加では69%と低いが、アルカリを添加した高 過飽和度条件では91%となった。このことは、 急速昇温において瞬時に与える過飽和度が高 いほど、核の生成数が多く、核生成の段階で 原料金属が消費されるため転化率は高く、そ の後粒子成長することなく、ナノサイズの粒 子が回収できることを示している。

今回、異なる金属酸化物種において溶解度 の算出により粒子径を予測し、流通式超臨界 水熱合成法を用いてナノサイズの粒子の設計 が可能であることを示した。しかし、ナノサ イズの粒子を合成する上では、生成過程また は成長過程における速度論的、平衡論的な解 析が必要不可欠であり、現在研究を進めてい る。

【文献】

1) D. A. Sverjensky, E. L. Shock, and H. C. Helgeson, Prediction of The Thermodynamic Properties of Aqueous Metal Complexes to 1000 oC and 5 kb, *Geochim. Cosmochim. Acta*, 61 [7], (1997), pp.1359-1412.

a) アルカリ無添加

