高強度コンクリートの鉄筋を含んだコア供試体に関する一考察 - 普通ポルトランドセメントを用いた検討 -

ものつく	り大学(学部)
ものつく	り大学

1.はじめに

鉄筋コンクリート構造物の強度確認などで 構造物からのコア供試体の採取を行なうに場 合、事前に鉄筋探査機により、鉄筋位置の確 認を行うため、従来に比べて鉄筋を切り取る ことは少なくなってきている。しかし、鉄筋 探査機の深さ方向への探査範囲は限定されて いること,結束線などの金属の影響などによ る誤差¹⁾が考えられることなどから鉄筋を含 んだコア供試体が採取される事例も生じるこ とがある。そのため、東京都都市計画局では、 普通強度を対象に鉄筋を切断したコア供試体 強度の補正係数²⁾を示されている。また、平 賀・毛見3)および田村ら4)は、水セメント比40 ~ 70% 程度の普通強度における鉄筋を切り 取ったコア供試体の圧縮強度性状について検 討を行なっているが、近年のコンクリートの 高強度化に対応した研究は行われていない。

そこで、本研究は、水セメント比25~55% の範囲の普通強度から高強度までの鉄筋を切 り取ったコア供試体の力学的特性を調べるた めに圧縮強度,静弾性係数およびポアソン比 について標準養生供試体との比較により検討 したものである。ここでは、4種類の鉄筋を含 んだコア供試体の材齢28日までの結果につい てまとめた。

2. 実験の概要

(1)実験の要因と水準

100 × 200(mm)のコア供試体が3本採取 できるW200 × h200 × L500(mm)の小試験体を 作成した。水セメント比は55,45,35 および 25%(それぞれN-55,N-45,N-35,N-25とする) の4水準とした。鉄筋はD13(SD295A)を使用 した。また、小試験体と同一のコンクリート) 大木崇輔 日大理工(院) 大塚秀三 中田善久 (前)足利工業大学 毛見虎雄 から標準養生供試体の採取を行った。 (2)使用材料およびコンクリートの調合

コンクリートの使用材料を表1に、調合を 表2に示す。すべての調合において単位水量 を170kg/m³一定とし、化学混和剤には高性能 AE減水剤を使用した。コンクリートの練混ぜ は、容量60リットルの強制二軸ミキサを使用 し、各調合とも1バッチ35リットルとした。 (3)小試験体の概要

小試験体の概要を図1に示す。小試験体の 配筋は、コンクリート構造物の柱,梁および 耐力壁などの主要構造部からの採取は通常行 わないため、床および非耐力壁を想定した配 筋方法とし、,,, (それぞれシング ル配筋,ダブル配筋,シングル交差配筋,ダ ブル交差配筋とする)に示す配筋方法とした。 使用型枠は、塗装合板のみとし、打込み時の 余剰水の流失を防ぐために、型枠の入隅部お よび鉄筋の差込み穴には全周に変性シリコン

材料	種類	品 質・性 状・主 成 分
セメント	普通ポルトランドセメント (略称N)	密度 : 3 . 16g / cm³ 比表面積 : 3 . 290 cm²/g
水	水道水	も の つ く り 大 学 中 央 棟 内 水 道
粗骨材	栃 木 県 安 蘇 郡 葛 生 町 産 砕 石 2005	表乾密度 : 2 . 70g/cm³ 実績率 : 60 . 0% 吸水率 : 0 . 59%
細 骨 材	栃 木 県 栃 木 市 尻 内 町 産 陸 砂	表乾密度 : 2 . 61g/ cm³ 粗粒率 : 2 . 75 吸水率 : 2 . 3%
化学混和剤	高性能AE減水剤	ポ リ カ ル ボ ン 酸 化 合 物

表1 コンクリートの使用材料

表2 コンクリートの調合

				_				
記号	W/C	S/a	a 粗骨材かさ	単位量(kg/m³)				Ad
		W	С	S	G	(C×%)		
N-55	55.0	52.4	0.545	170	309	882	883	0.85
N-45	45.0	50.8	0.545	170	378	882	883	0.95
N-35	35.0	50.1	0.525	170	486	825	851	1.05
N-25	25.0	44.7	0.525	170	680	666	851	1.15

Consideration in the High-Strength Concrete Core Conteined Reinforcing Bar -Inverstigation of Case for Normal Portland Cement-OKI Sousuke,NAKATA Yoshihisa,OTSUKA Shuzo and KEMI Torao

図1 小試験体の概要

系シーリングを充填した。

小試験体へのコンクリートの打込みは、2 層打ちとして、いずれの試験体とも3箇所の 同一位置に100V棒状バイブレータ(振動数: 12,000~15,500Hz)を各5秒挿入し、さらに ゴムハンマーで側面のせき板を10回叩き締固 めた。

型枠の脱型は、標準養生供試体および小試 験体とも打込み直後に上端をポリエチレン フィルムで覆うことにより水分の蒸発を防止 し、48時間静置した後とした。また養生方法 は、標準養生供試体および小試験体とも養生 条件を同一とし、養生槽へ所定の材齢まで浸 漬させた。

(4)コアドリルの機種および仕様

コアドリルは、ドリルモータ電流一定制御 方式の全自動送り装置を取り付けた機種とし た。また、定格容量3kVAのハードトランスを 併用し、コアドリルに安定した電流を供給出 来るるように設定した。コアドリルの仕様を 表3に示す。送速さの設定は、2.5cm/minを 超える場合コンクリート中の鉄筋にビットの 先端が触れると削孔トルクが、コンクリート だけを削孔した場合に比べ著しくトルクおよ び摩擦熱が増大し、コアドリルの回転が停止 してしまうため2.5cm/minと定めた。ビット は外径 110内径 100(mm)の湿式用人工ダ イヤモンドビットを使用した。また、採取の 際に生じるブレード用冷却水の影響も無視で きないため流量を一定とした。

3. 結果および考察

3.1 フレッシュコンクリートの性状

フレッシュコンクリートの性状結果を表4 に示す。全ての調合において、スランプ,ス ランプフロー,空気量は、高性能AE減水剤の 使用量を調整することにより目標値を満足す ることができた。

3.2 強度性状の検討

(1) 各種配筋における供試体圧縮強度

セメント水比と圧縮強度の関係を図2に示 す。いずれの調合においても圧縮強度は標準 養生供試体に対して強度比が、シングル交差 配筋で0.76と最も低下する傾向となり、次い

表3 コアドリルの仕様

電源	定格電流	最大出力	周速
(∀)	(A)	(∀)	(m/min)
単相100	15	2400	470

表4 フレッシュコンクリートの性状結果 スランプ スランプフロー 空気量 (cm) (cm) (%) 記号 実測値目標値 実測値 目標値 実測値 目標値 18 ± 2.0 28.0 × 27.5 4.5 ± 1.5 N-55 17.0 3.6 N-45 22.0 21 ± 2.0 37.0×36.0 4.8 4.5 ± 1.5 N-35 51.0×50.5 50 ± 7.5 4.5 ± 1.5 3.8 N-25 61.0×61.5 60 ± 10.0 5.4 4.5 ± 1.5

図4 各種配筋方法における応力 - ひずみ曲線

でダブル交差配筋の0.81、シングル配筋の 0.82、ダブル配筋の0.90という傾向を示し た。また、標準養生供試体に対するコア供試 体の圧縮強度は、平賀・毛見らの提示してい る値に比し若干低下する傾向を示したが、当 時と比べて使用材料の違いが影響しているも のと考えられる。

供試体容積の欠損率と圧縮強度の関係を図 3に示す。供試体容積の欠損率と圧縮強度の 関係は、概ね負の相関性が見られた。しかし シングル交差配筋は、供試体容積の欠損率が ダブル交差配筋に比し低いにもかかわらず、 圧縮強度が低下した。これは、不均一な鉄筋 の拘束力によるものと考えられる。さらに影 響する要因には、初期硬化に伴う鉄筋下端の コンクリートの沈降およびコアドリルの削孔 に伴う鉄筋の切断時にビットから伝わる振動 による付着低下が考えられるが、この点は今 後の課題したい。また、コア供試体の破壊は、 載荷に伴い鉄筋の周囲にひび割れが発生し、 円錐形に崩壊する傾向であった。これは、コ ンクリートの高強度に伴い顕著になる傾向を 示した。

(2)各種配筋方法における応力ひずみ曲線の 検討

各種配筋方法における応力-ひずみ曲線を図 4に示す。応力ひずみ曲線は、水セメント比ご とに3本のコア供試体のうち代表的なものを 示す。すべての配筋方法において弾性範囲内 での縦ひずみおよび横ひずみは、標準養生供 試体に比し大きくなる傾向を示した。また、 シングル交差配筋およびダブル交差配筋の縦 ひずみは塑性域から破壊に至る過程において 逆転し、急激に大きくなった。これによりす べての配筋方法において、標準養生供試体に 比し比較的低い応力から供試体内部における 組織の破壊が進行しているものと考えられ る。

(3) 各種配筋における静弾性係数

静弾性係数は、50×10⁻⁶では供試体端面の 精度・圧縮強度試験機の微小な動きにより載 荷初期におけるひずみ値の精度が低下すると 考えられるため値(1)式により算出した。

$$E = \frac{\delta_2 - \delta_1}{\varepsilon \iota - 50 \times 10^6}$$
(1) I

ここに、E:静弾性係数(kN/mm²), 2: 1/3 最大荷重時点における圧縮強度(kN/ mm²), 1:縦ひずみ50 × 10⁻⁶時点における 圧縮強度(KN/mm²), 1/3 最大荷重時点 で生じる縦ひずみの平均

供試体容積の欠損率と静弾性係数の関係を 図5に示す。供試体容積の欠損率と静弾性係 数の関係は概ね負の相関性が見られた。しか し、N-35およびN-55は、ダブル配筋とシン グル交差配筋と配筋方法は、異なるにもかか わらず静弾性係 数がほぼ同にに なる傾向を示し た。供試体容積の く損率が増加す るのに伴い、静し たではないが、

前述した付着強度に依存しているため、包含 する鉄筋量に比例しているためと考えられ る。

(4) 各種配筋における供試体ポアソン比

ポアソン比の測定は、供試体中心部の対面 する2箇所にひずみゲージを貼り付けその平 均値ポアソン比の算定方法は静弾性係数と同 様に50×10⁻⁶以下を除外し(2)式により算出 した。

$$= \frac{t^2 t^1}{t 50 \times 10^{-6}}$$
 (2) \vec{r}_{v}

ここに :ポアソン比, t²:1/3 最大荷重時 点における横ひずみ, t²:縦ひずみ50 × 10⁻⁶時点における横ひずみ, :1/3 最大 荷重時点における縦ひずみ

供試体容積の欠損率とポアソン比の関係を 図6に示す。供試体容積の欠損率とポアソン 比の関係は、縦ひずみに大きく依存するため 静弾性係数と同様に負の相関性が得られると 思われたが、シングル交差配筋がその中で最 も大きくなった。これは、片側に偏在したシ ングル配筋より両側に鉄筋のあるダブル交差 配筋の方が、円周方向のすなわち横ひずみの 増加を低減させたためと考えられるが、今後 検討する必要がある。圧縮強度とポアソン比 の関係を図7に示す。鉄筋の有無にかかわら ずポアソン比は0.20を中心として0.15~ 0.25に分布する傾向となったが、ばらつきが 大きかった。また、すべてのポアソン比を最 大荷重時点で算定すると弾性範囲で算定した 場合に比べ概ね2倍になる傾向を示した。こ れは、図4に示されるように、弾性範域の範 囲内で縦ひずみの変化率以上に横ひずみが増 加したためと考えられる。

本実験を行った結果、以下の知見が得られた。

(1) 圧縮強度はシングル交差配筋を除き、断 面容積の欠損率の増加に伴い低下する傾向を 示した。

(2)静弾性係数は供試体容積の欠損率の増加 に伴い低下する傾向を示した。

(3) ポアソン比は標準養生供試体に比しシン グル交差配筋は増加し、ダブル交差配筋では 低下する。

今後、鉄筋を切り取ったコア供試体の力学 特性に不明確であるところが見られるためさ らに普通セメントについて検討すると伴に、 中庸熱セメントおよび高炉B種セメントにつ いての検討も行ない鉄筋を含んだコア供試体 と無筋コア供試体の強度比を確立する予定で ある。

【謝辞】

本実験をおこなうにあたり、ものつくり大学建設 技能工芸学科中田研究室の学生より多大なご協力を 頂きました。ここに記して感謝します。

【参考文献】

1) 李迅, 毛見虎雄, 藤井和俊: 鉄筋コンクリート構造物の健全性評価技術に関する研究、電磁波誘導法によるかぶり厚さの施工精度の調査, 日本建築学会技術報告集, pp29-32, 2001.7

2)東京都都市計画局建築指導部:建築物の耐震診断シ ステムマニュアル(鉄筋コンクリート造),東京都都市 計画局建築指導部,pp88-89,1988,12

3) 平賀友晃, 荒巻哲生, 倉林清, 毛見虎雄: コンク リートコアーの切断方法がコンクリート強度に及ぼ す影響、その2鉄筋を含むコンクリートコアーの場合 ,日本建築学会大会学術講演集,pp.91-92,1977.10 4)田村博,上田哲夫:鉄筋を含んだコンクリー トコアの圧縮強度に関する実験的研究, 日本 建築学会大会学術講演集,pp127-128,1980.9