- 地震観測結果の検討 -

安藤建設技研 藤本利昭

1.はじめに

埼玉県ふじみ野市の研究所建物を対象に継続 的に地震観測を実施してきた。観測を開始した 1991年から現在までに,マグニチュード M4.0 を 超える地震に対して100を超える観測記録が得ら れている¹⁾。

本報では,2004~2005年に記録された代表的な 地震を対象に,地震の特性,地盤ならびに免震建 物の振動特性の概要について報告する。

2. 地震観測概要

2.1 建物および地盤概要

観測建物は,1989年に在来構法で建設された 第1研究棟(以下,在来棟)と,1991年に鉛プラ グ入り積層ゴム(LRB)を免震装置として採用し た第2研究棟(以下,免震棟)の2棟である。在 来棟および免震棟の写真を写真1に示す。

建物規模は,地上3階建て,軒高11.6m,延床 面積は在来棟が522m²,免震棟が545m²で,構造 形式はX,Y方向共に純ラーメンの鉄筋コンクリ ート造である。

免震棟基礎部には,外形が450,550 の2 種類,各4体の合計8体の鉛プラグ入り積層ゴム が設置されている。

敷地は青梅を扇頂とする扇状地の東端付近に 位置しており,地盤は GL-5m までがローム層, GL-5m 以下が武蔵野・所沢礫層と続く第二種地盤 であり,建物の基礎はローム層に直接基礎として いる。

2.2 地震観測システム概要

地震観測は,地盤,建物(免震棟,在来棟)の 8点について行っている。地震計の設置場所およ

写真1 在来棟(右前)と免震棟(左奥)

表1 地震計の測定位置および測定項目

図1 観測建物と地震観測位置

The Earthquake Response of the Base Isolated Building Investigation Based on the Earthquake Observation Result

Toshiaki FUJIMOTO

び測定項目を表1,図1に示す。

各測定点に設置された地震計では,建物の長辺 方向 X,短辺方向 Yの水平2方向(NS,EW)お よび鉛直方向 Z(UD)の3成分を測定している。 また地盤については,地中 GL-30m で観測を行っ ている。

3.観測地震とその概要

3.1 検討地震

本報では,表2に示す2004~2005年に観測さ れた3つの記録を用いて考察する。なお以降の検 討では,建物の短辺方向である東西方向(EW) を対象に結果を述べる。

検討対象とした 3 つの地震記録は,2004 年 10 月 23 日に発生した新潟県中越地震の本震(震源 地:新潟県中越地方,M=6.8),2005 年 7 月 23 日 に発生した千葉県北西部地震(震源地:千葉県北 西部,M=6.0),2005 年 8 月 16 日に発生した宮城 県沖地震(震源地:宮城県沖,M=7.2)とした。 なお,対象建物のある埼玉県ふじみ野市大井中央 の震度は,新潟県中越地震が震度 2,千葉県北西 部地震と宮城県沖地震が震度 3 であった。

3.2 地震動の比較

図2に,免震棟の基礎部で観測された地震波形 を示す。なお図に示した速度波形は,地震計で得 られた加速度波形を積分して求めた値である。

新潟県中越地震では,地震発生後,P波S波が 到着し,その後表面波と考えられる長周期の地震 動が2分以上にわたって続いている。宮城県沖地 震においてもやや長周期の地震動が観測されて いるが,千葉県北西部の地震ではそのような波は 認められない。

図3に基礎部の速度応答スペクトル(減衰定数

h=0.05)を示す。3 つの地震を比較すると,新潟 県中越地震では,6~7秒の長周期の応答が卓越し ているのに対し,千葉県北西部地震では1秒以下 が卓越し,宮城県沖地震では約1~3秒が卓越し ていることが分かる。

古村の報告²⁾³⁾によれば,関東地方で長周期の 地震動が強く生成されるためには,マグニチュー ドがおよそ M6.2~6.5 以上と大きく,震源深さが

図3 基礎部の速度応答スペクトル(h=0.05)

衣2 快韵刘永地辰							
No.	W1	W2	W3				
発生日時	2004年10月23日17時56分	2005年7月23日16時35分	2005年8月16日11時46分				
震源地	新潟県中越地方	千葉県北西部	宮城県沖				
震央	北緯 37.3°, 東経 138.8°	北緯 35.5°, 東経 140.2°	北緯 38.1°, 東経 142.4°				
震源深さ	約 12km	約 73km	約 42km				
マク゛ニチュート゛	M6.8	M6.0	M7.2				
最大震度	7(新潟県川口町川口)	5強(東京足立区伊興)	6 弱(宮城県川崎町前川)				
ふじみ野市大井中央	震度2	震度 3	震度 3				

長2 検討対象地震

およそ 20km 以下と浅い場合に起きることから, 今回検討した地震では,震源深さが約 12km と浅 かった新潟県中越地震では約 6~7 秒の長周期地 震動が発生したものの,宮城県沖地震では震源深 さが約 43km と深かったため新潟県中越地震のよ うな長周期地震動が発生しなかったものと考え られる。また,千葉県北西部の地震では,新潟県 中越地震(震源距離 204km),宮城県沖地震(震 源距離 398km)に比べ震源距離が 81km と近かっ たため,他の地震のような後揺れが無かったもの と考えられる。

4.観測地震による応答

4.1 表層地盤の応答性状

図 4 には,基礎部と地中(GL-30m)での加速 度応答スペクトル(減衰定数 h=5%)を示す。

3 つの地震の比較では、千葉県北西部の地震で、 周期 0.2~0.3 秒付近の加速度が極めて大きく、他の地震の 2 倍程度となっている。

基礎部(図a)と地中(図b)の比較では,地

中の加速度スペクトルに対して,周期1秒以下の 短周期の領域において,基礎部のスペクトルが大 きく増幅していることが分かる。特に周期T=0.26 ~0.28秒での増幅割合が大きく,周期が1秒を超 えるとほとんど増幅は認められない。なお,各周 期における加速度応答スペクトルの増幅割合は 地震波によらず同様である。

表3に観測記録のフーリエスペクトルから求め た伝達関数を用いて算定した表層地盤,建物の固 有周期を示す。表3に示すように表層地盤の固有 周期は約0.28秒であり,加速度スペクトルの増幅 傾向と一致している。

4.2 在来棟(RC)の応答性状

フーリエスペクトルより求めた在来棟短辺方 向の固有周期は,表3に示すように0.285秒であ り,表層地盤の固有周期とほぼ等しかった。その ため,在来棟は表層地盤の影響を大きく受け易い ものと考えられる。

表4に最大応答値の一覧を,表5に応答倍率の

表3 1次固有周期一覧

	固有周期			
表層地盤	T=0.286 秒			
在来棟短辺方向	T=0.285 秒			
免震棟短辺方向	 (上部構造:T=0.282秒) (震度1程度の地震:T=0.437秒) 新潟県中越地震:T=0.443秒 千葉県北西部地震:T=0.479秒 宮城県沖地震:T=0.482秒 			

表 4 最大応答加速度 (cm/sec ²)							
	新潟県 中越地震	千葉県北 西部地震	宮城県沖 地震				
在来棟最上階	53.87	97.90	22.96				
免震棟最上階	14.85	19.66	15.64				
免震棟1階床下	13.04	15.74	11.83				
免震棟基礎	8.72	21.76	8.24				
免震棟地中	5.34	7.08	4.68				

表5 最大加速度応答倍率

	新潟県	千葉県北	宮城県沖
	中越地震	西部地震	地震
在来棟最上階 / 基礎	6.18	4.50	2.78
免震棟最上階 / 基礎	1.70	0.90	1.90
免震棟1階床下/基礎	1.50	0.72	1.43
免震棟 / 在来棟	0.28	0.20	0.68
免震棟基礎 / 地中	1.63	3.07	1.76

一覧を示す。在来棟最上階では,基礎の最大応答 加速度に対して,2.8 倍~6.2 倍の加速度を示し, 大きく増幅していることが分かる。

4.3 免震棟の応答性状

表3に示すように,フーリエスペクトルより求 めた免震棟の固有周期は,上部構造のみの固有周 期はT=0.282 秒で,在来棟とほぼ同様の周期であ ることが分かる。震度1程度の他の地震記録から 求めた免震棟全体の固有周期は,T=0.437 秒程度 であり,免震装置により建物の固有周期が在来棟 の1.5倍となっている。同様に新潟県中越地震で はT=0.443 秒,千葉県北西部地震ではT=0.479 秒, 宮城県沖地震ではT=0.482秒と固有周期が若干延 びている。

これらの3つの地震では,震度1程度の地震に 比べ,建物への入力加速度が大きく,免震装置の 変形の増大,鉛プラグの降伏により固有周期が延 びたものと考えられる。

表5に示した基礎部の最大応答加速度に対する 建物各部の最大応答加速度倍率を図5に示す。新 潟県中越地震,宮城県沖地震では,最大応答加速 度が免震棟の1階で1.43~1.40倍,最上階で1.70 ~1.90倍に増幅しており,免震装置による応答加 速度の低減効果が少ない。一方で,千葉県北西部 の地震では,免震棟1階で最大加速度が72%に, 最上階においても約90%に低減されており,免震 装置による応答加速度の低減効果が認められる。

これらの結果から,千葉県北西部の地震では, 特に建物への入力加速度が大きく,鉛プラグの降 伏による減衰の付加効果により,最大応答加速度 が低減されたものと考えられる。

4.4 在来棟と免震棟の応答性状の比較

表5,図5より,免震棟最上階の最大応答加速 度は在来棟最上階の20%~68%であり,免震装置 による応答低減効果が認められる。

図6に千葉県北西部の地震における在来棟と免 震棟最上階の加速度波形(T=20~50秒)を示す。先 に述べたように,この地震では在来棟の固有周期 での加速度が卓越したため最大応答加速度が極 めて大きかったこと,入力加速度が大きく,免震 効果が顕著だったことから2棟の建物の応答の際 が極めて顕著に出た例と考えられる。

5.まとめ

以上,2004~2005年に発生した3つの地震記録 を対象に観測結果の概要を報告した。その結果, 震度がほぼ等しい地震においてもその特性は異 なり,建物の応答も異なることが分かった。また, 観測された地震は,震度3程度ではあるが,これ らの地震に対しても,免震建物の応答低減効果が 確認できた。

参考文献

- i) 藤本利昭,根本恒,八ッ繁公一,:免震構造物 の地震観測報告 その1 観測システムおよび観測結果の概要,安藤建設技術研究所報, Vol.9,pp.9~18,2004年
- 古村孝志: 2004 年新潟県中越地震の地震波動 伝播と関東平野の強い揺れ、東京大学地震研究 所 HP, 2004
- 3) 古村孝志:宮城県沖地震の地震波の伝わり方と 関東の揺れ,東京大学地震研究所 HP,2005