AZ31 マグネシウム合金板のクロス圧延による成形性

日大生産工(院)鮫島北斗日大生産工勝田基嗣

1. 緒言

AZ31 マグネシウム合金板は圧延後に異方性が 現れる.成形用素板としては異方性を緩和し,成 形能を均一化する必要がある.

前報¹⁾では圧延方向を変化させて作製した板 材が機械的性質では変化が現れなかったが,塑性 特性値および集合組織に影響をおよぼすことを 報告した.

本実験では前報と同じ条件で圧延を行った. AZ31 マグネシウム合金板の圧延方向および焼き なまし温度の変化により,成形性にいかなる影響 をおよぼすかを曲げ性,絞り性,および張り出し 性について検討した.

2. 供試材および実験方法

本実験の供試材はAZ31 材でもMnが添加されて いない鋳造材を圧延素材として用いた.一般に使 用されている AZ31B 材は素材に含まれる Mn が Al₆Mn となる化合物を晶出し,その化合物の大き さが後々の成形性に大きく影響をおよぼす.本実 験ではそのような影響を除去し,純粋なクロス圧 延だけによる諸性質の変化を検討するため,Mn の添加されていない素材を採用した.Table1に AZ31 マグネシウム合金の化学組成を示す.これ らの鋳造材から機械加工を施し,厚さ10mmとし た.その後,723K-24hで均質化処理を施し,Table 2 に示す圧延工程にて熱間圧延を行い圧延方向 の異なる3種類の板を作製した.

は反時計回りに 180°回転させ, 圧延を行った. は 0°に対し左右に 45°方向で圧延を行った. は反時計回りに 90°回転させ, 圧延を行った. 板の最終圧延方向(7th)を RD 方向とした.圧延 は直径 150mm の 2 段ロール圧延機を使用し,ロー ルを加熱せずに常温で圧延を行うコールドロー ル法を用いた.なお最終板厚は全て 0.8mm とした. 作製した板材に対して各試験片形状に機械加工 した後,焼きなまし温度による諸性質の変化を検 討するため,曲げ試験片,集合組織観察用試験片 では 523K-2h,623K-1h,723K-1h で最終焼きなま しを行い,組織観察用試験片,硬さ試験片,曲げ 試験片,絞り試験片,エリクセン試験片,では 523K-2h,548K-1h,573K-1h,623K-1h,723K-1h で最終焼きなましを行った.その後,組織観察, 硬さ試験,曲げ試験,絞り試験,エリクセン試験, 集合組織観察を行った.また,全ての熱処理は酸 化防止のためアルゴンガス雰囲気中で行った.

組織観察は光学顕微鏡にて板の RD 方向に対し て平行な断面を観察し,結晶粒径をチンマー法に て算出した.

Table 1 Chemical composition. (mass%)

Alloy	AI	Zn	Mn	Fe	Ni	Cu	Si	Mg
AZ31	3.29	1.1	<0.01	<0.007	<0.005	<0.002	<0.02	bal.

h								1
N		1st	2nd	3rd	4th	5th	6th	7th
Thickness (mm)	10.0	7.00	4.90	3.43	2.40	1.68	1.18	0.80
Temp	1	1	1	1	1	1	1	2
Rolling reduction (%)	30							

Table 2 Rolling process conditions.

1...Intermediate annealing at 723K-1h.

2...Final annealing at 523K-2h,548K-1h,573K-1h,623K-1h and 723K-1h.

Formability by cross rolling of AZ31 magnesium alloy sheets. Hokuto SAMEJIMA and Mototsugu KATSUTA 硬さ試験はマイクロビッカース試験機を用い 試験荷重は0.5kgf(4.9N),加圧時間は15secと した.

曲げ試験は 180 度押し曲げ法を用い,JIS に基 づく方法で行った.さらに面内異方性を検討する ため0°,45°,90°の3方向からJIS3 号試験 片を採用し,室温にて試験速度1.67mm/sec で行 い,ポンチが下方向に 30mm 移動させるか,試験 片が破断するまで行い,試験片表面を観察して曲 げ判定,スプリングバック率(/180°, :も どり角)の値を算出した.試験は無潤滑で行った.

絞り試験は,ポンチ径40mm,ポンチ肩半径R4, ダイスの穴径はしごき加工にならないように 43mm,ダイス肩半径R8とした.試験片は直径56mm から73mmのブランクを打ち抜き,絞り速度は 2.3mm/sec,しわ押さえ力0.8t(7.85KN)で試験 を行い,限界絞り比(LDR)を算出した.潤滑剤 にはカーボングリスを用いた.

エリクセン試験は, ポンチ径 20mm, ダイスの 穴径 27mm, 張り出し速度 0.1mm/sec とし, 潤滑 材として 0.1mm のテフロンシートを使用した.試 験片は直径 75mm のブランクを打ち抜き試験を行 った.

集合組織観察は,板表面で行い,底面{0001} および錐面{1011}の極点図を作製した.

3. 実験結果および考察

3.1 結晶粒径

Fig.1 に焼きなまし温度による結晶粒径の変 化を示す.焼きなまし温度 523K で結晶粒径は微 細化し,平均結晶粒径は約 10µmを示した.焼き なまし温度 523K から 573K で平均結晶粒径は約 10µm前後と結晶粒の成長も少なく,安定した大 きさの結晶粒径が得られた.焼きなまし温度の上 昇とともに平均結晶粒径は大きく成長し,焼きな まし温度 723K では急激に結晶粒が粗大化し,平 均結晶粒径が 100µm を示した.圧延方向の異な る 3 種類の板の粒径には大きな差は見られなか った.

Fig.2 Changes in Hardness with annealing temperatures.

Punch													
Temp	(R)	R4	R3	R2	R1	R4	R3	R2	R1	R4	R3	R2	R1
	0 °				×				×				×
523K	45 °				×				×				×
	90°				x				×				×
623K	0 °				×				×				×
	45 °				×				×				×
	90°				×				×				×
	0 °				×				×				×
723K	45 °				×				×				×
	90 °				×				×				×

Table 3 Bending evaluations by annealing temperatures.

:Success :Crack x:Destruction

3.2 硬さ試験

Fig.2 に焼きなまし温度による硬さの変化を 示す.焼きなまし温度523Kから573Kで安定した 硬さが得られた.焼きなまし温度の上昇とともに 硬さは低下する傾向が現れた.焼きなまし温度 523K付近で再結晶が終了し初期粒度が現れた. 焼きなまし温度623Kから723Kで結晶粒の成長が 始まったものと考えられる.3種類の異なる圧延 方向による硬さの差は見られなかった.

3.3 曲げ試験

Table 3 に曲げ試験の結果を示す.図中の は 曲げ成形可能であったもの, は微小な亀裂が確 認できたもの,×は割れが生じたことを示してい る.曲げ試験では焼きなまし温度,試験片採取角 度および3種類の異なる圧延方向による差は見 られず,全ての条件でポンチ径 R2まで良好な成 形性を示し,ポンチ半径 R1では割れが生じた.

Fig.3 にポンチ径 R2 から R4 によるスプリング バック率の値を示す.ポンチ径が大きくなるとと もにスプリングバック率は高く現れた.また,焼 きなまし温度が上昇するとともにスプリングバ ック率は小さくなる傾向を示した.3種類の圧延 方向によるちがいでは,クロス圧延を行った,

のスプリングバック率は一方向で圧延を行っ た の値よりわずかに低い値を示した.

3.4 絞り試験

Fig.4 に焼きなまし温度による限界絞り比 (LDR)を示す.焼きなまし温度 523K から 623K にかけて再結晶化が進み結晶粒の成長も少なく, 安定した範囲では高いLDR が得られた.特に焼き なまし温度 548K,573K で良好な絞り性が現れ, LDR=1.8 前後を示した.焼きなまし温度 573K で クロス圧延を行った では最高値である LDR=1.825 が得られた.焼きなまし温度 723K で は全ての LDR が低下する傾向が現れた.これは焼 きなまし温度 623K から 723K では結晶粒の成長が 顕著に現れ,強度が低下したためだと考えられる. 3 種類の異なる圧延方向によるちがいでは焼き なまし温度 523K,723K ではクロス圧延を行った

, の LDR が一方向で圧延を行った より高い 値を示した.

Fig.5 に焼きなまし温度 573K でクロス圧延を 行った の LDR=1.825 と一般的なマグネシウム 合金板の常温での限界絞り比である LDR=1.4 の 写真を示す .絞りカップの表面には割れが見られ ず良好な成形性を示した.また,LDR=1.825 と LDR=1.4を比較するとLDR=1.825には側壁の高さ が得られた.

Fig.3 Changes in spring back rate with punch radius.

Fig.4 Changes in LDR with annealing temperatures.

annealing temperatures.

3.5 エリクセン試験

Fig.6 に焼きなまし温度によるエリクセン値 の変化を示す.焼きなまし温度 523K から 573K にかけて再結晶化が進み結晶粒の成長も少なく, 安定した範囲では高いエリクセン値が得られた. 焼きなまし温度 623K から 723K ではエリクセン値 は低下する傾向を示し,絞り試験と同様な結果が 得られた.

3.6 集合組織

Fig.7 に焼きなまし温度 523K における{0001} および{1011}の圧延方向の異なる 3 種類の板の 集合組織を示す. , , の全ての{0001}では RD 方向の前後 2 極にピークが現れた.クロス圧 延を行った , の{0001}は RD 方向から TD 方向 へとわずかながらピークが移る傾向を示した.

4. 結言

- 1)結晶粒径は焼きなまし温度523Kから573Kで平均結晶粒径は約10µm前後と結晶粒の成長も少く、安定した大きさの結晶粒径が得られた、焼きなまし温度の上昇とともに平均結晶粒径は大きく成長する傾向を示した。
- 2)硬さ試験では焼きなまし温度 523K から 573K で安定した硬さが得られた .焼きなまし温度の 上昇とともに硬さは低下する傾向が現れた .
- 3)曲げ試験では焼きなまし温度,試験片採取角度 およびよび 3 種類の異なる圧延方向による差 は見られず,全ての条件でポンチ径 R2 まで曲 げられ,良好な成形性を示した.クロス圧延を 行った,のスプリングバック率は一方向で 圧延を行ったの値よりわずかに小さい値を 示した.
- 4) 絞り試験では焼きなまし温度 548K,573K で良好な絞り性が現れ,LDR=1.8 前後を示した.焼きなまし温度 573K でクロス圧延をした では最高値である LDR=1.825 が得られた.3 種類の異なる圧延方向によるちがいでは焼きなまし温度 523K,723K ではクロス圧延を行った,

の LDR が一方向で圧延を行った より高い 値を示した .

	{0001}	{1011}
Level1	1.00	0.50
Level2	2.25	0.70
Level3	3.50	0.90
Level4	4.75	1.10
Level5	6.00	1.30
Level6	12.00	1.50
Level7	18.00	1.80

- Fig.7 Changes in {0001} and {1011} pole figures with rolling direction. (Annealed at 523K)
- 5)エリクセン試験では焼きなまし温度 523K から 573K で高い値が得られ, 絞り試験と同様な結 果が得られた.
- 6)集合組織ではクロス圧延を行うことで{0001} は RD 方向から TD 方向へと集積が広がる傾向を 示した.

参考文献

 1)鮫島,勝田:第37回日本大学生産工学部学術 講演会機械部会講演概要