風車用切欠き翼の空力特性に関する研究

日大生産工(院) 〇江口 正一 日大生産工 石井 進 日大生産工 平本 政明 (株)シグナスミル 野口 常夫 拓大工 平野 孝典 拓大工 藤本 一郎

1. 序論

京都議定書が発効され、世界的規模で CO₂ 等を削減しようという動きが高まっている. 日本としても 2012 年までに CO₂ 排出量を 90 年度比で 6%削減する必要がある.風力発電 は自然エネルギを利用した CO₂を排出せず環 境にやさしい発電方法なので,近年注目を集 めている.

低出力ではあるが小型で設置が容易なジャ イロミル形(垂直軸形)風車は,最近ビルに 設置されるなど,空間を有効活用できる小型 発電用風車として用いられ始めてきている. しかし,周速比が低く,効率的にはプロペラ 形(水平軸形)風車に劣っている.そこで,ジ ャイロミル形風車の起動風速を下げることと, 効率を上げることを目的として,翼型の一部 に切欠きを施した翼を用いることにした.こ れにより,揚力形風車としての特性に加えて, 回転位置によっては抗力を利用可能となるこ とが期待できる.

本報では、風車用の翼型として用いられて はいないが、過去の研究で空力特性が分かっ ている Gö801 型翼を用い、切欠きのない通常 翼と切欠き翼との翼面圧力計測結果から、切 欠きの効果について実験的に調べた結果の一 例を報告する.

2. 実験装置及び方法

2.1 実験装置

実験装置の概観を図1に示す.本装置は回 流式低速風洞の吹出し口に設置されている. 吹出し口寸法は幅300mm×高さ500mmである. 吹出し口に140mmの間隔で取り付けられた2 枚の平行な供試翼固定壁の間に供試翼を設置 した.供試翼は吹出し口中心から250mm下流 の位置に,翼弦中心を回転軸として設置して ある.予備実験で供試翼固定壁の境界層を測 定し,翼周り流れの2次元性を確認した.

供試翼の迎角は、回転軸に取り付けたステ ッピングモータにより変化させる.ステッピ ングモータはオリエンタルモーター株式会社 のギヤードモーターを使用した.供試翼の表 面に圧力孔が設けてあり、各圧力孔は圧力導 管、シリコンゴムチューブを介してスキャニ ングバルブに接続されている.また、翼面圧 力はデジタル微差圧計(長野計器(株)製、圧 カレンジ±500Pa)で測定し、AD ボードを介 してパソコンに取り込まれる.

Study on Aerodynamic Characteristics of Notched Wing for Windmill

Masakazu EGUCHI, Susumu ISHII, Masaaki HIRAMOTO, Tsuneo NOGUCHI, Takanori HIRANO and Ichiro FUJIMOTO

2.2 供試翼

供試翼は Gö801 型翼と Gö801 型切欠き翼の 2 種類を用いた. 図 2 に供試翼を,また図 3 に翼断面を示す. 翼は真鍮製で,翼弦長 100 mm,翼幅 150 mm (両端に 5 mmづつの取り付け 幅を含む)で,図 2 のように一列に φ 0.6 mm の圧力孔が設けてある. 圧力孔は,Gö801 型 翼では背面 30 個,腹面 13 個の計 43 個,Gö801 型切欠き翼では背面 30 個,腹面 14 個の計 44 個とした. 供試翼内部に φ 1.2 mmの圧力導管 (洋銀パイプ)が埋め込まれており,各圧力 孔ごとに圧力導管を介して翼端までつながっ ている. 圧力孔の一部で翼背面と腹面に圧力 導管が重なる箇所があり,そこは他端で圧力 導管をUターンさせてある.

次に Gö801 型切欠き翼について説明する. この翼型は垂直軸形の風力発電用風車での起 動特性を改善するために,翼の腹面側後縁部 分を切り取った形状をしている.本研究では 図3に示すように腹面側の翼弦長40%以降を 切り取った形状とした.これは前縁方向から の流れに対しては切欠きの影響が小さく,後 縁方向からの流れに対しては切欠きによる抗 力の増大が期待できると推測されるからであ る.

図2 供試翼

Gö801 型切欠き翼

2.3 実験条件

今回は Gö801 型翼と Gö801 型切欠き翼の2 種類の翼面圧力計測を行った.実験条件を下 記に記す.なお,主流速度は風洞吹出し口(上 面から 50 mmの位置)に設置したピトー管を用 いて測定した.

レイノルズ数:Re=1.0×10⁵

(ここで Re=U·c/ ν , c:翼弦長, U:主流速度) サンプリング数:200 サンプリング時間間隔:0.01s 迎角範囲: $\alpha = -30^{\circ} \sim +30^{\circ}$ (1°刻み) $\alpha = 150^{\circ} \sim 210^{\circ}$ (1°刻み) $\alpha = 30^{\circ} \sim 150^{\circ}$, 210° $\sim 330^{\circ}$ (5°刻み)

実験結果及び考察

計測した翼面圧力から,単位翼幅あたりの 揚力係数 C₁ と抗力係数 C₂を求めた.

$$C_{P} = \frac{P - P_{\infty}}{\frac{1}{2}\rho U^{2}}$$
(1)
$$C_{L} = \oint C_{P} \cdot d(\frac{x}{c})$$
(2)

$$C_D = \oint C_P \cdot d(\frac{y}{c}) \tag{3}$$

ここで、P:翼面圧力、P_∞:主流静圧である. 迎角 0°~360°に対する C_L, C_Dの変化を Riegelsの実験結果¹⁾と比較検討したところ, 翼まわりの流れが剥離している迎角範囲では, 本実験結果に大きな違いが見られた. この原 因を調べたところ剥離を生じる迎角範囲では, 供試翼の風洞出口面積に対する投影面積比が 大きくなり、その閉塞効果により風洞出口の 流速と流れ方向が変化していることが分かっ た. そこで, 翼まわりの流れが剥離する迎角 範囲の C_L と C_Dの値は, Riegels の NACA0012 型翼の実験データ ¹⁾を用いることとした. つ まり、本報ではα=-30°~19°及びα=150° ~210°の範囲は本実験結果を,それ以外の迎 角範囲は Riegels の実験結果を用いて解析を 行った.

3.1 翼腹面圧力分布

図 5 に迎角 180°付近における翼腹面の圧 力分布を, Gö801 型翼と Gö801 型切欠き翼に ついて示す. 横軸は無次元翼弦位置 x/c,縦 軸は圧力係数 C_p である. この迎角範囲では, 流れは翼後縁方向から前縁方向となっている. 図を見ると, Gö801 型翼では, 翼弦方向に滑 らかな圧力分布となっているが, Gö801 型切 欠き翼では, x/c=0.4付近で翼前縁側と後縁 側とで不連続な分布となっており,切欠きの ない場合に比べて大きな違いが見られる. こ れは, x/c=0.4 から後縁側が切欠きとなって いるためで,切欠きの影響は翼腹面圧力分布 に大きく表われていることがわかる.

詳細に見ると, x/c≤0.1 の範囲では, 切欠 きの影響はほとんど見られない.0.1<x/c<0.4 の範囲では, 切欠きのない場合に比べて, 切 欠きのある場合の方が圧力は低くなる傾向を 示している. 逆に x/c≥0.4 の範囲では, 切欠 きの影響により, 圧力は切欠きなしの場合よ りも高くなる傾向を示している.

3.2 接線力

図6に翼を風車に取り付けた場合の記号の 説明を示す.翼の翼弦中心と風車の回転軸と が支持棒で連結されている.回転面の接線方 向と翼弦方向とのなす角を取付角 β ,接線方 向の力(接線力)を C_T ,また回転角を θ とし, 図中 $\theta=0^\circ$ の位置を基準位置とした.迎角 α と回転角 θ は回転方向が逆になっている. 図7に,取付角 $\beta=0^\circ$ の場合の $\theta=0^\circ \sim 360^\circ$ における C_T 分布を示す.図中の破線はGö801 型翼,実線はGö801型切欠き翼を示す.また,

図 8 θ=180°付近での接線方向力の変化

前述したように、剥離流れとなる範囲(30° < θ <150°及び210°< θ <341°)は Riegelsの実験結果を用いていて、一点鎖線 で表している. C_Tは取付角0度での翼弦後縁 方向を正に取っているので、C_Tが負になると 回転に寄与することになる.図7を見ると、 θ の範囲が-7°≤ θ <30°及び160°≤ θ <178°付近では切欠き翼の方が若干 C_T が大きい値となっているが, $-19° \le \theta \le -7°$ 及び 178° $\le \theta \le 188°$ の範囲で切欠き翼の方が低い 値を示していることがわかる. $\theta = 180°$ 近辺 を拡大してみると図8のようになっており, この角度範囲では切欠き部による抗力増大の 効果が大きく表われていることが確認できた.

3.3 回転エネルギ

ここでは回転力に及ぼす取付角の影響に ついて検討する.ただし風車は普通,数枚の 翼を取り付けてあるが,ここでは1枚の翼の みについて考える.そのため,実際の風車で は上流側に位置する翼の後流の影響や周速等 を考慮する必要があるが,ここでは無視して いる.つまり,1枚の翼のみが周速比0の状 態(準定常状態)で1周回転したときに接線力 がなす仕事について考えることとする.これ は風車の起動特性を示すものと考えられる. ここでは C_T を周積分した値 C_W の正負について 調べてみた.ここで

$$C_W = \oint C_T d \theta \tag{4}$$

 $C_w < 0$ であれば, 接線力 C_T は翼の回転に寄与 することになる. 結果を図9に示す. 図を見 ると, $\beta = -72^\circ$ のときに C_w の負値は最大と なっており, この取付角のときに最大の寄与 が望めることが分かる. この角度は, 風車が 回転し始める起動時に適当な値であると思わ れる. また, 標準型より切欠き型の方が低い 値を示しており, 切欠きの効果により起動風 速を下げることが可能であることが確認でき た.

図9 取付角に対するエネルギの変化

4. 結論

本研究では、風車用の翼の一部を切り取っ た切欠き翼の空力特性を実験的に調べ、切欠 きの効果について検討した.その結果、切欠 きの影響は、特に後縁側からの流れを受ける 迎角範囲において抗力を増加させるように作 用し、これにより、回転力の増加に寄与する ことが明らかになった.また、1 枚の翼が回 転する時の接線力のなす仕事相当量を計算し、 起動時では取付角-72°が最適であることが 分かった.

5. 今後の予定

実験の精度を高めるためには以下のことが 必要である.今回の実験では迎角 20° $\leq \theta$ <150°及び 210° $< \theta < 330$ °の範囲では翼の 閉塞効果により風洞出口風速が変化するため 今後この点を改良して,すべての迎角範囲で 正確な圧力データの取得が可能となるように する予定である.

今回は切欠きの効果を調べるために,1枚 の翼が準定常的に回転した場合について考察 を行ったが,今後風速が大きくなった場合や, 1枚の翼だけでなく,数枚の翼を取り付けた 場合についての回転エネルギ(回転仕事)を 求め,風車としての性能について調べる予定 である.さらに,実際の風車に使われる NACA2415型の切欠き翼についても同様に実 験を行い,その結果を実際の風車の性能向上 に役立てていくことを予定している.

参考文献

 F. W. Riegels: Aerofoil Sections, Butterworths, (1961)