多重モデルを用いた車両と路面の状態推定に関する研究

日大生産工(院) 〇宮田 純弥 日大生産工 丸茂 喜高 日大生産工 綱島 均

1.緒言

4WS,スタビリティコントロールなど車両姿勢制 御を行うためには車両状態と路面状態(車体横すべ り角,路面摩擦係数)を知ることが必要となる.そ れらを計測するためには特殊なセンサ¹が必要であ る.しかし、このようなセンサを車両に搭載するこ とが困難な場合がある.このような場合は,計測の 容易な加速度情報などから推定することが可能であ る.主な推定法としてはオブザーバやカルマンフィ ルタなどが挙げられる.これらの手法は多くの応用 例2)が報告されている。しかし、これらの手法は通 常,単一モデルに基づき推定を行うので対象のシス テムの構造・運動パターンの変化に対応できない. そこで,複数のモデルを用意しそれらに対応するマ ルチモデル推定法という手法が考案されている.マ ルチモデル推定法もいくつの手法が存在するが,そ の中でも IMM (Interacting Multiple Model) 法³⁾は最 もシステムの構造変化の推定に適しているといわれ ている.

本研究では、車両の横すべり角を推定するにあた り路面状態の変化に対応するためにIMM法を用い た方法を提案する. IMM法はシステムモード間の 遷移を考慮した手法である.本研究では、路面摩擦 係数により複数のモードをあらかじめ定めて、それ ぞれのモードに対応する推定値から、車両の状態推 定と同時に路面摩擦係数の推定を行う方法を提案す る.

2.IMM法による推定アルゴリズム

IMM 法のアルゴリズムを図1に示す・IMM 法は 主に,フィルタ部、ミキシング部,推定値の結合部 に分かれている.フィルタ部は入力値や観測情報な どから推定を行う部分である.横すべり角の推定に は,EKF(拡張カルマンフィルタ)を用いている.シ ステムモードは路面摩擦係数の違いにより複数個の モードを考える.ミキシング部はモード間の遷移を 考慮し,相互関係を持たせフィルタの入力値などを 算出する部分である.ここで観測残差からモードの 適合度を示す生起確率を求める.推定値の結合部は 生起確率と各 EKF の推定値を掛け合わせ,確率的 に結合し最終的な推定値を得る部分である.

3.シミュレーション 3.1 車両モデルとタイヤモデル

前章で得られた IMM 法による推定アルゴリズム の有効性を,シミュレーションにより検証した.使 用した車両モデルは図2に示す平面二輪モデル.タ イヤモデルには図3に示す非線形性を持つタイヤモ デル⁴⁾を使用した.

Fig.1 IMM estimator for vehicle and road state estimation

Junya MIYATA, Yoshitaka MARUMO and Hitoshi TSUNASHIMA

3.2 シミュレーション条件

50[km/h]で走行している車両に対し,前輪実操舵 角を振幅6[deg],周波数0.25[Hz]の正弦波状に与え ,緊急回避を行うダブルレーンチェンジを想定した シミュレーションを行った.観測情報は横加速度と ヨーレートで車体重心で計測するものとした.サン プリング周期は0.01[s]とし、タイヤにはプラント ノイズが加わり,観測値には観測ノイズが加わるも のとする.路面摩擦係数は操舵中に変化するとし、 シミュレーション開始後0~2秒間は $\mu = 0.8$ (アス ファルト乾燥路面を想定), 2~4秒間はμ=0.3(ア スファルト水膜路面を想定),4~6秒間はμ=0.55 (アスファルト湿潤路面を想定)とした.タイヤモデ ルは路面摩擦係数 µ を 1.0 ~ 0.1 を 0.1 間隔で 10 個 のモードを設定し、それぞれをモード1,2,..,10と した.モード間の遷移の確率を示す遷移行列は急激 な路面摩擦係数の変化はないものとしてモード間の 遷移がない場合を高確率とした.また, IMM 法の 有効性を比較するため,単一のEKF(μ=0.8モデル) による推定も行った.

4.シミュレーション結果

シミュレーションの結果を入力値(前輪実操舵 角),観測値(横加速度,ヨーレート),推定値(横 滑り角,路面摩擦係数),生起確率の順に図4に示 す.横滑り角は単一のEKFでは推定ができていない が,IMM法では路面摩擦係数の変化に対応して精 度の良い推定が行われている.また,路面摩擦係数 も精度の良い推定が行われている.生起確率は,1 ~2秒の間ではモード1~3,2~4秒の間ではモー ド8,4~6秒ではモード5,6と真値に近いモード が高い値を示しており,IMM法による推定が良好 に行われていることが分かる.

5.結言

本研究では横加速度とヨーレートの観測値から IMMを用いて横滑り角と路面摩擦係数を推定する シミュレーションを行った. IMM 法は状態量の推 定だけでなく生起確率を注視する事でシステムの変 化を捕らえる事が可能であることを示した.今後は 前後方向などより複合的な車両モデルを用い,より 現実的な車両状態量や路面状態の推定を行うIMM 法の構築を行う.

「参考文献」

1)http://www.onosokki.co.jp/HP-WK/whats_new/catalogs/ products/LC_series_4.pdf

 2) 毛利ほか,拡張カルマンフィルタを用いた車線追従 制御の検討,自動車技術会学術講演前刷集,No.115-00,(2000)

3) Y. Bar-Shalom, and X. Rongli, and Thiagalingam Kirubarajan, "Estimation with Applications to Tracking and Navigation", Wiley Interscience

4) 永井ほか,「非線形領域における車両横滑り角の推 定に関する研究」,日本機械学会第5回交通・物流部 門大会講演論文集,No.96-51,(1996),pp.135-138

Fig.4 Simulation results