FSW で接合した AZ31 合金薄板材の加工性

日大生産工(院)	多ケ谷	洋平
日大生産工	久保田	正広,

1. 緒言

マグネシウム合金は接合性に劣り,通常の溶融 接合法では継手強度が低く,熱変形が大きくなる 欠点がある.近年になって開発された固相接合の 一種である摩擦攪拌接合(Friction Stir Welding :FSW)は接合時の熱影響による強度低下と, 母材の熱歪みが非常に小さく,酸化防止対策を必 要としないことが特徴でマグネシウム合金の接 合に適している.これらの要因からFSW法で接 合することによって,従来の溶融接合法による欠 点は改善されると予想される.そこで本研究では, AZ31 合金薄板材のFSW 継手材の塑性加工特性 及び,引張特性を明らかにすることを目的とした.

2. 実験方法

2.1 供資材

FSW 方向を母材の圧延方向を平行として,突 合せ接合した.板厚は1.2mm と2.5mmの2種 類とした.FSW 接合条件をTable1に示す.

母材 の 板厚 (mm)	工具 回転 数 (rpm)	接合速度 (mm/mini)	傾斜角	ショ ルダ ー径 ()	ピン 径 ()
1.2	2000	500	3 °	10	3
2.5	1500	400	3 °	13	4

Table 1 FSW conditions.

2.2 結晶組織の観察

母材および FSW 継手材の接合部より,10mm 角程度の板を切り出し,バフ研磨後に,エッチン グ処理をして,光学顕微鏡を用いて組織観察した. FSW 継手材では,接合中心部近傍の組織を観察 した.

2.3 硬さ試験

母材およびFSW 継手材の接合部の硬さ試験をし

た.バフ研磨によって鏡面とした試料を用いた. 試験荷重は 100gf,保持時間を 15s とし,20 ポ イント測定した.FSW 継手材では,板厚方向の 中心部で接合面付近を測定値所とした.

菅又 信 , 金子 純一

2.4 引張試験

母材及び FSW 継手材を全長 180mm, 平行部 幅 12.5mm,標点間距離 50mmの試験片に加工 した.試験温度を常温(RT),473K,573K と し,引張速度は 3mm/min で一定として,各条件 において3本ずつ試験を行い,その平均値を求め た.なお,高温での引張試験は,試験温度に到達 してから 5min 間保持した後に試験を開始した.

2.5 曲げ試験

全長120mm,幅20mmの試験片を作製し,V ブロック法を用いてポンチ先端半径を0~5mm としてV曲げ(90°曲げ),押曲げ法を用いて, ポンチ先端半径を1~5mmとしてU曲げ(180° 曲げ)をした.試験後,湾曲部を観察し,スプリ ングバック量を測定した.試験温度は常温のみと し,試験速度は10mm/minで一定とした.また, FSW 継手材では,溶接線を曲げ試験片の幅方向 として曲げ外側をFSW 接合表面にする場合(表 曲げ)とFSW 接合裏面にする場合(裏曲げ)及 び,溶接線を曲げ試験片の長手方向とし曲げ外側 をFSW 接合表面にする場合(縦表曲げ)とFSW 接合裏面にする場合(縦裏曲げ)の4つの条件に ついて行った.

3. 実験結果

3.1 結晶組織の観察

Fig.1 に一例として(a)母材と,(b)FSW 継手材 の厚さ1.2mmの光学顕微鏡組織を示す.母材と 比べてFSW 継手材では,結晶粒が微細化されて いる.また,板厚による組織の違いは,母材及び

Formability of friction stir welded AZ31 magnesium alloy sheets. Youhei TAGAYA , Masahiro KUBOTA , Makoto SUGAMATA and Junichi KANEKO FSW 継手材のいずれにおいても見られなかった.

3.2 硬さ試験

Fig.2 に硬さ試験結果を示す.FSW 継手材で は,接合による硬さの低下は見られず,母材と同 程度の硬さであった.なお母材の硬さは約58HV であった.母材では板厚の違いによる硬さに差は 認められないが,FSW 継手材では,厚さ1.2mm で硬さが若干増加した.

(a) Base metal (b) FSW joint Fig.1 Optical micrographs of AZ31 sheets t=1.2mm.

3.3 引張試験

各温度における母材とFSW継手材の引張強さ を Fig.3 に , r 値を Fig.4 に示す .

引張強さは母材よりもFSW継手材の方が低い 値を示したが ,高温になるとその差は小さくなっ た.また,FSW 継手材はすべて接合部で破断し ており,破断形態は脆性的であった.

r値は,母材では,常温では約4という高い値 を示したが,473K では急激に低下し,573K で はさらに低下した.FSW 継手材では母材とは逆 に,常温では0に近い値を示し,473K では高く なった.母材では,板厚による違いは見られなか ったが,FSW 継手材の常温では板厚による違い は見られないが,473K では約2倍の差が出た. また,板厚1.2mm では473K で母材と同等の値 を示した.

- 4. 結言
- (1) FSW 継手材の結晶組織は,攪拌されて接合 されたため,結晶粒の微細化が確認された.
- (2) FSW 継手材と母材では硬さに差は認められなかったが, FSW 継手材の板厚 1.2mmの硬さは,板厚 2.5mmと比べて高い値を示した.
- (3) FSW 継手材の引張強さは母材を下回った. しかし,高温になるとその差は減少した.ま た常温,高温ともに接合部で脆性的に破断した.
- (4) 母材は,温度上昇ともに r 値は減少し, FSW 継手材では,温度上昇ともに増加した.

Fig.3 Tensile strength of base metal and FSW joint at various temperatures.

Fig.4 r-value of base metal and FSW joint at various temperatures.