# 自動車のフロントサイドメンバ用に開発された CFRP 角柱の衝撃応答挙動

### 1. まえがき

自動車や航空機などから放出される温室効果ガ スのひとつである CO2 ガスは地球温暖化の大きな 要因であることは良く知られていて、CO2 ガスを 減らすための努力は様々な産業において活発に行 われている。自動車産業においては、CO2 ガスを 減らすもっとも有効な方法として自動車の燃費を 向上させることが挙げられる。自動車の燃費を向 上させるためには色々な方法が考えられるが、も っとも有効的なアプローチとしては比強度・比剛 性に優れている炭素繊維強化複合材料(Carbon fiber reinforced plastics: CFRP) といった軽量材料 を用いた自動車の軽量化であろう。

著者ら<sup>1)</sup>は従来の自動車ドア部のスチール製サ イドインパクトビームの代用品として CFRP 薄肉 ベルトを開発し、落錘衝撃試験および有限要素解 析を行い衝撃応答挙動について明らかにし、その 有用性について検討した。

本研究では、自動車の前面衝突時衝撃吸収部材 として長方形 CFRP 角柱を開発し、衝撃吸収部材 としての有用性を明らかにするために落錘衝撃試 験を行った。また、有限要素ソルバーLS-DYNA<sup>2)</sup> を用いて衝撃応答解析を行い、落錘衝撃試験結果 との比較検討も行った。

### 2. 落錘衝撃試験

### 2.1 試験体

・方向配向炭素繊維プリプレグ(東レ㈱製 P3052s-20、マトリックス樹脂:エポキシ)を用い てシートワインド法により長方形 CFRP 角柱を製 作した。試験体のメーン部分の積層構成は [(0/90)<sub>6</sub>/0]<sub>s</sub>とした。また、補強部分の場合は 0°方 向繊維のみとなっている。試験片の先端には安定 的な衝撃破壊挙動を得るために角度 45°のテーパ 加工を施した。試験体の形状および寸法を図1に 示す。

| 日大生産工 | (非常勤講師) | 〇金 | 炯秀 |
|-------|---------|----|----|
| Ē     | 日大生産工   | 邉  | 吾一 |

#### 2.2 試験方法

落錘衝撃試験は高さ 12m (衝突スピード:約 55km/h) で質量 105kg の落錘体を自由落下させる ことにより行った。衝撃荷重はロードセルを試験 体の下に取付けて計測した。また、高速度カメラ により落錘体の変位と衝撃圧縮破壊プロセスも観 察した。図2に落錘体の形状と装着された試験体 の様子を示す。



(a) impactor

(b) mounted specimen Fig. 2 Tower drop impact test setup

#### 3. 有限要素法による解析

衝撃実験結果と比較のために有限要素ソルバー LS-DYNA (Ver.970、LSTC 社) を用い解析を行っ た。また、シェル要素を使用しモデルを作成した。 有限要素モデルの詳細を図3に示す。モデルの先 端は安定的な衝撃破壊挙動を得るために厚さを線 形的に変化させた方法を導入した。厚さ一定のモ デルと厚さを変化させたモデルの衝撃応答挙動を 比較したものを図4に示す。初期衝撃荷重値を比 較すると、厚さ一定のモデルが厚さを変化させた モデルより約2倍程度高い。また、破壊過程での 衝撃荷重では厚さ一定のモデルの方が低くなって いる。厚さを変化させたモデルの方がより実験で の衝撃応答挙動に近い傾向を示したので、この方 法を導入した。また、補強部のモデル化はその面 積を考慮し、モデルの厚さを厚くし(補強部の厚 さ:8.9mm)、さらに積層構成を調整することで行



Fig. 3 Details of the finite element model

Impact Response Behaviors of Rectangular CFRP Tubes Developed for Front Side Members of Automobiles Hyoung-Soo KIM and Goichi BEN



Fig. 4 Comparison of constant and linear variation of thickness models

モデルの積層構成はメーンおよび補強部それぞ れ[(0/90)<sub>6</sub>/0]<sub>s</sub> と[0<sub>10</sub>/(0/90)<sub>6</sub>/0]<sub>s</sub> である。接触条件は 落錘体と試験体の間には面-面接触条件を、試験 体には自己接触条件を与えた。また、モデルの試 験体には、Chang-Chang 破損側<sup>3)</sup>を用い衝突時の破 壊進展過程をシミュレートした。解析に用いた材 料定数を表1に示す。

Table 1 Material properties of rectangular CFRP tube used in the FE analysis

| Longitudinal Young's modulus      |          | 140.0 GPa |
|-----------------------------------|----------|-----------|
| Transverse Young's modulus        |          | 9.0 GPa   |
| Minor Poisson's ratio             | Vha      | 0.0219    |
| Shear Modulus in plane (ab)       | $G_{ab}$ | 4.0 GPa   |
| Shear Modulus in plane (bc)       | $G_{bc}$ | 2.0 GPa   |
| Longitudinal tensile strength     | $X_T$    | 2.6 GPa   |
| Longitudinal compressive strength |          | 1.5 GPa   |
| Transverse tensile strength       |          | 0.07 GPa  |
| Transverse compressive strength   |          | 0.05 GPa  |
| Shear strength in plane (ab)      |          | 0.09 GPa  |
| 1                                 |          |           |

## 4. 結果および考察

図5に衝撃破壊後の試験体の様子を示す。図からは安定的な衝撃破壊進展挙動を示していることが分かる。図示していないが、実際の高速度カメラの映像からも確認できた。破壊様子を見ると、破壊の大半は外側に向けて進展しているが、内側にも破片が詰まっていることが分かる。

数値解析と衝撃試験を比較した結果を図6に示 す。また、最大衝撃荷重、逐次圧縮破壊された変 位および衝撃荷重-変位線図から求めた吸収エネ ルギーを要約したものを表2に示す。本研究の衝 撃実験では破壊された変位128mmに対して11.7kJ のエネルギーが吸収された。



Fig. 5 Photographs of impact tested rectangular CFRP tube: (a) isometric view; (b) top view



Fig. 6 Comparison of experimental and predicted load-displacement curves

自動車の前面衝突時衝撃吸収部材として目標と される吸収エネルギーが破壊変位 300mm に対し て約 18kJ であるので、長方形 CFRP 角柱の前面衝 突時衝撃吸収部材としての有用性が確認できた。 また、衝撃応答解析では、最大衝撃荷重と圧縮破 壊された最大変位では少々差があるものの、吸収 されたエネルギーについては良い一致を示した。 今後、解析は補強部の形状をより試験体に近いモ デルで行う予定である。

Table 2 Comparison between the experimentaland FEM results of the rectangular CFRP tubes

|                         | EXP  | FEM  |
|-------------------------|------|------|
| Maximum load [kN]       | 179  | 196  |
| Final displacement [mm] | 128  | 146  |
| Absorbed energy [kJ]    | 11.7 | 11.8 |

## 5. まとめ

本研究では、自動車の前面衝突時衝撃吸収部材 として長方形 CFRP 角柱を開発し、衝撃吸収部材 としての有用性を明らかにするために落錘衝撃試 験を行った。また、有限要素ソルバーLS-DYNA を用いて衝撃応答挙動および吸収されたエネルギ ーの予測を行い、以下の知見を得た。

- 1) 長方形 CFRP 角柱の前面衝突時衝撃吸収部材 としての有用性が確認できた。
- 衝撃応答解析では、最大衝撃荷重と圧縮破壊 された最大変位に少々差があるものの、吸収エ ネルギーについては定量的に良い一致を示した。

# 「参考文献」

 1) 邉, 夘沢, 金, 青木, 三石, 北野, CFRP 薄肉 ベルトの衝撃応答挙動とその強度, 日本機械学会 論文集(A編), 70巻 694号, (2004), pp.824~829.
2) LS-DYNA 970 Manuals, LSTC Co. (2003)

3) F.K. Chang and K.Y. Chang."A Progressive Damage Model for Laminated Composites Containing Stress Concentration", J. of Composite Materials, Vol. 21, (1987), pp.809~833.