アイソグリッド CFRP 円筒殻の圧縮特性

日大生産工(院)	○荻野	智彦
日大生産工	邉 吾	<u>i</u> .—-

1. 緒言

アイソグリッド構造とは、三角形の格子状の補強 材と表板から構成されており、軽量化と強度が要求 されるロケット胴体など、主に航空宇宙分野に用い られている軽量薄肉構造である.ロケット燃料タン クなどアイソグリッド構造を用いた円筒殻を形成す るには、まず厚板のAL合金から正三角形の格子状補 強材を残して、薄板になるまで削り出しを行なう. その後、平板を円弧形状に曲げ、それらを溶接して 円筒殻を形成している.

このアイソグリッド構造を金属材料で作る場合, 材料の大部分を削り出さなければならず,また溶接 などによる接合が必要となり,接合部で強度的に不 安定になることが考えられる.そこで本研究では, 比強度・比剛性に優れた炭素繊維強化プラスチック (Carbon Fiber Reinforced Plastics, CFRP)を用いて,アイ ソグリッド CFRP 円筒殻の一体成形技術の開発を目 的とする.また,静的軸圧縮試験を行ない,補強効 果を確認し,その圧縮特性の評価を行なう.

2. 成形方法

2.1 型の製作

アイソグリッド円筒殻を成形するための金型を Fig.1 に示す. 金型の寸法は,縦 193mm,横 314mm である. 金型にはアイソグリッドの格子状に溝が彫 ってあり,その寸法は幅 2mm,深さ 3mm である.

また,金型の水平方向(円筒殻ではフープ方向)の溝 を少しずらして,オフセット部を設けた.補強材と なるフープ方向と2本の斜め方向(円筒殻ではヘリカ ル方向)の繊維が交差する部分は,他より多く繊維が 積層されるため,厚みが増してしまい応力集中の原 因となる.そこで補強材が交差する点をオフセット させることによって,補強材の厚みが増すことを防 ぐ¹⁾²⁾.

この金型の溝と同じ幅のプラスチック棒を溝には め込みオス型を製作した.このオス型にシリコン(信 越化学工業(株)製 KE-1414)を流し,アイソグリッドの 溝を持つシリコンのメス型を製作した(Fig.2).シリコ ン型の溝の寸法は幅 2mm, 深さ 3mm である. シリコン型の両端は、ヘリカル方向の溝部分に継 ぎ目がくるようにし、また型を固定するための穴を あらかじめ開けて成形した.

Fig.1 Aluminum Isogrid Mold

Fig.2 Silicon Rubber Mold

2.2 成形

シリコン型を固定させたマンドレルを Fig.3 に示す. マンドレルは直径 90mm のアルミパイプで,両側に はガイドピンを設けた.ガイドピンは,マンドレル の外側からネジを入れ,周方向に等間隔に並べたも ので成形時に繊維をガイドするために使用した.

アイソグリッド円筒殻は FW(Filament Winding)装置を用いて成形した.材料には,一方向炭素繊維ト ウプレグを使用した.

Fig.3 Mandrel Covered with Silicon Rubber Mold

まず始めにアイソグリッド円筒殻の補強材となる 部分を成形する.補強材はフープ方向とヘリカル方 向から構成されており、シリコン型の溝にヘリカル 方向、フープ方向の順に交互に繊維を積層していき、 補強材を成形する.型の溝は、ヘリカル方向を 6 プ ライ、フープ方向を 6 プライし終えたとき、繊維で 満たされた.

補強材が成形されたら、次に表板を成形する.表板は、固定していたネジを外し、型の上から補強材と一緒に巻いていき、2プライした(Fig.4).表板の積層は、巻き角を90°と60°の2通りで行なった.

Compressive Property of Isogrid CFRP Cylindrical Shell

Tomohiro OGINO and Goichi BEN

補強材と表板が巻き終えたら,硬化炉で 130℃,1 時間で硬化させて,脱型する.脱型は,まずマンド レルに設けたガイドピンを取り外し,マンドレルか ら硬化した円筒殻を脱型する.次に,円筒殻の内側 からシリコン型を取り外す.成形品をFig.5に示すが, 右側の図は軸方向に 2 分割した一方の断面である. また成形品の寸法を Table.1 に示す.

Fig.6 Location of strain gages

4. 試験結果

Isogrid90° および Non-isogrid90° 円筒殻の圧縮試 験結果を Table.2 に示す.荷重はどちらも線形的に上 がっていき,最大荷重に達すると著しく低下した. Non-isogrid90° 円筒殻の場合,荷重はほぼゼロまで低 下したが, Isogrid90° 円筒殻はある程度の荷重を維持 し続けた(Fig.7). Table.2 に示すように最大荷重を比 較すると, Isogrid90° 円筒殻は Non-isogrid90° 円筒殻 の約 2.6 倍高い値を示した.

次に Isogrid60° および Non-isogrid60° 円筒殻の試 験結果を Table.3 に示す.荷重は 90° 巻き同様,線形 的に上がっていったが,最大荷重に達した後徐々に 低下していく挙動を示し,ある程度の荷重を維持し 続けた(Fig.8). Table.3 に示すように最大荷重を比較 すると, Isogrid60° 円筒殻は Non-isogrid60° 円筒殻の 約 2.2 倍高い値を示した.

試験片胴部における荷重 - ひずみ線図を Fig.9, Fig.10 に示す. 試験片外表面に貼付したひずみゲージ は格子に囲まれた表板の中央に位置している. 軸方 向のひずみを比較すると, 90°巻き, 60°巻きのど ちらの場合も,最大ひずみは Isogrid 円筒殻と Non-isogrid 円筒殻では,ほぼ等しい値を示していた. Isogrid 円筒殻では,ほぼ等しい値を示していた. Isogrid 円筒殻は,内側に補強材があることによって, 荷重の多くを補強材が受け持っていると言えるが, 表板が破壊に至るひずみ,つまり Non-isogrid 円筒殻 の最大ひずみに達すると Isogrid 円筒殻も荷重が大き く低下し始めている. このことから Isogrid 円筒殻の 最大ひずみは表板に依存していることが考えられる.

次に補強材における荷重-ひずみ線図を Fig.11, Fig.12 に示す. ヘリカル方向の補強材のひずみ(5ch, 6ch, 8ch)は圧縮荷重によって圧縮ひずみを示し,い ずれも同様な傾向を示した. 逆に,フープ方向の補 強材のひずみ(7ch, 9ch)は引張ひずみを示した.

また Table.4 に示すように、アイソグリッドで補強 された円筒殻は、表板を 90°巻きした場合、60°巻 きした場合共に、補強されていない円筒殻に比べ、 最大応力、ヤング率とも高い値を示し、補強効果を 確認することができた.なお、Isogrid CFRP 円筒殻の 断面積は軸方向に対して不連続であるため、ここで

Fig.4 Filament Winding of Isogrid Cylindrical Shell

Fig.5 Whole and Half Section of Cured Isogrid Cylindrical Shell

Table.1 Dimension of Isogrid Cylindrical Shell

Winding Angle of Skin (°)	90	60
Shell Length (mm)	137.5	135.1
Inner Diameter (mm)	108.5	110.8
Plate Thickness (mm)	0.8	0.6
Stiffener Width (mm)	2.0	2.2
Stiffener Height (mm)	2.5	2.2

3. 圧縮試験

アイソグリッド CFRP 円筒殻を用いて,静的軸圧 縮試験を行なった.試験は,アイソグリッドで補強さ れた円筒殻(表板の巻き角が90°のものをIsogrid90°, 60°のものをIsogrid60°とする)と補強されていない 円筒殻(巻き角が90°のものをNon-isogrid90°,60° のものをNon-isogrid60°とする)を比較し,補強効果 を確認する.試験機にはオートグラフを使用し,圧 縮試験用の球座式圧盤を用いて,試験片に均一に負 荷をかけられるようにした.また,端部割れ防止の ために試験片端部を外側から GFRP で補強した.ひ ずみは,試験片外表面の胴部に2軸ゲージを180°対 称に2箇所,またアイソグリッド円筒殻の補強材に はFig.6に示した位置に1軸ゲージを5ヶ所貼り測定 した.負荷速度は0.5mm/minとした.なお試験片の Vfは72%である. は破壊箇所の表板と補強材の断面積(※1)で求めた場合と,表板のみの断面積(※2)で求めた場合の2通りで評価した.

Table.2 Comparisons of Maximum Load

(Isogrid90° and Non-isogrid90°)

	Maximum load (kN)		
	Isogrid90°	Non-isogrid90°	
No.1	36.3	14.2	
No.2	39.6	13.9	
No.3	37.5	15.4	
Ave.	37.8	14.5	

Fig.8 Load-Displacement Curve (Isogrid60° and Non-isogrid60°)

Table.3 Comparisons of Maximum Load

(Isogrid 60° and Non-isogrid 60°)

	Maximum Load (kN)		
	Isogrid60°	Non-isogrid60°	
No.1	31.5	14.8	
No.2	29.0	12.8	
No.3	31.5	14.2	
Ave.	30.7	13.9	

Fig.9 Load-Strain Curve in Axial Direction

(Isogrid90° and Non-isogrid90°)

Fig.10 Load-Strain Curve in Axial Direction

(Isogrid 60° and Non-isogrid 60°)

Fig.12 Load-Strain Curve (Stiffeners of Isogrid60° Shell)

Table.4 Results of Compression Test

	Cross Section	Maximum Stress	Young's Modulus
	(mm2)	(MPa)	(GPa)
Non-isogrid90°	295.9	49.0	8.6
Isogrid90°	355.2 ※1	99.1	16.4
	275.8 🔆 2	127.6	21.2
Non-isogrid60°	247.6	56.2	11.3
Isogrid60°	330.7 % 1	93.3	15
	232.3 🔆 2	133.5	21.2

(%1 Thin plate + Stiffeners %2 Thin plate)

5. 破壞様相

Isogrid90°円筒殻の場合,まずヘリカル方向の補強 材が交差するオフセット部で破壊が起きたと考えら れ、これにより荷重が大きく低下したと考えられる (Fig.13).しかし,損傷していない補強材もあるため その後もある程度の荷重を維持し続けたと言える. 最終的に表板に周方向にき裂が入り,形状が大きく 変形した.以上のことから,本体を 90°巻きした Isogrid CFRP 円筒殻の場合,荷重の多くは補強材が受 け持っていると言え,特に補強材が交差するオフセ ット部には応力集中が起きていることが考えられる.

また,破壊後の試験片を観察すると,Fig.13のよう に,繊維が積層されていた補強材が剥離を起こし繊 維の層が浮き上がっていた.これは補強材の繊維の 接着が十分でないためだと考えられる.そのため, 補強材の繊維の接着強度を向上させることによって, より高い補強効果が期待できると考えられる.

次に Isogrid60°円筒殻の破壊様相を Fig.14 に示す. Isogrid60°円筒殻の場合,最大荷重を超えたあたりか ら,表板が内側にくぼむように座屈し始めた.その 後も荷重を与え続けると, Fig.14 のように座屈箇所が 増えていった. Isogrid60°円筒殻は90°巻きと違い, 表板の繊維が軸方向にある程度角度を持っているた め,試験後除荷すると表板に現れたくぼみは無くな り,元の円筒形状に戻った. Non-isogrid60°円筒殻で も表板が内側にくぼむ様な座屈形状を示した.試験 後の試験片を観察すると Isogrid90°円筒殻同様,へ リカル方向補強材のオフセット部に破壊箇所が見ら れた.

Fig.13 Failure at Offset Point (Isogrid90° Cylindrical Shell)

Fig.14 Buckling Deformation of Isogrid60° Cylindrical Shell

6. 解析

まず始めに Non-isogrid CFRP 円筒殻について実験 と比較,検討するために汎用有限要素プログラム ANSYS9.0を用いて固有値座屈解析を行なった.解析 モデルは SHELL181を用いた 1/2 対称モデルで,モデ ルの節点数は 2091 である.解析は線形座屈解析を行 なった後,初期不整を与えず非線形解析を行なった.

実験値と FEM 値を比較した結果を Fig.15 に示す. 座屈荷重の値を比較すると, FEM 値より実験値のほ うが 1/2 から 1/3 近く低い値となり,通常の円筒殻の 軸圧縮座屈の知見通りの結果となった.原因として, 一つは試験片が持つ初期不整が考えられる.また圧 縮試験において,試験片に均等に荷重を加えること は難しく,さらに座屈荷重は試験時の境界条件に大 きく影響する.軸方向のひずみの値から試験片には 若干片当たりしていることが確認できるため,実験 値が FEM 値より低い値になったと考えられる.

また Isogrid CFRP 円筒殻についてのモデリング及 び座屈解析も現在行なっている.詳細については講 演で発表する予定である.

Fig.15 Comparisons of Experimental and FEM Results (Non-isogrid60° and Non-isogrid90°)

7. 結言

アイソグリッド CFRP 円筒殻の軸圧縮試験を行な うことによって、補強効果を確認することが出来た. また円筒殻の内側をアイソグリッドで補強したこと によって、補強材が荷重の多くを受け持つため、補 強効果に大きく寄与しているということを明らかに した.また、Isogrid CFRP 円筒殻の最大圧縮ひずみが 表板に依存していることがわかった.さらに、成形 時において補強材、及び表板の接着性を向上させる ことによって更なる補強効果が期待できると言える. 今後は FEM による解析を行ない、実験と比較、検 証していく.

参考文献

- 1) Thomas D. Kim, Composite Structure 45, (1999), 1-6
- 2) Thomas D. Kim, Composite Structure 49, (2000), 21-25
- 邉, 荻野 第34回 FRP シンポジウム講演論文集, 2005 年, P28-29
- 4) 邉, 荻野 第47回構造強度に関する講演会論文集, 2005 年, P84-86