# 異周速加熱ロールによる AZ31 合金板の性質に及ぼす圧延条件の影響

日大生産工(院) 五十嵐 大輔 日大生産工 菅又 信,金子 純一,久保田 正広

# 1. 緒言

Mg は実用金属中最も軽量であり,比強度,減衰能特性 など様々な優れた特性を持つ.また,リサイクル性にも優 れ,海水中にも豊富に含まれることからアルミニウムの代 替材としての利用が増えつつある.

しかし,板材からのプレス製品として利用するには,常 温での成形性に劣ることや強い異方性を示すことなど, 様々な課題があり板材の使用量は極めて少ない.

本研究では,新しく導入した異周速加熱ロール圧延機に より,通常の同周速圧延に比べて高いひずみを付与して, Mg 合金板を作製し,その機械的性質,集合組織,成形加 工性を評価する.プレス成形性に優れた Mg 合金板材を得 ることが最終的な目的である.

## 2. 圧延板作製方法

直径 155mm の AZ31 合金鋳塊(厚さ 5.0mm)から 100mm角の厚板材を切り出して,両面を厚さ 3.0mmまで 面削した.その後, Ar ガス雰囲気中で 673K, 1440minの 均質化熱処理を施し圧延スタート材とした.

圧延はすべて 1 パスあたりの圧下率を 10%とした . 各 圧延条件におけるギア比と,圧延速度を以下の Table.1 に 示す.

Table.1 Gear ratio and roll speed of finish rolling

| Gear | Upper<br>gear<br>teeth | Lower<br>gear<br>teeth | Gear ratio | Upper roll<br>speed<br>(m/min) | Lower roll<br>speed<br>(m/min) |
|------|------------------------|------------------------|------------|--------------------------------|--------------------------------|
| Α    | 28                     | 28                     | 1:1        | 3.00                           | 3.00                           |
| В    | 25                     | 31                     | 1:1.24     | 3.10                           | 2.50                           |
| С    | 22                     | 34                     | 1:1.55     | 3.00                           | 2.00                           |
| D    | 20                     | 36                     | 1:1.80     | 3.00                           | 1.67                           |

圧延板の最終板厚は 0.8mm であり, 圧延条件はアルフ ァベットと数字を用いて表記した.アルファベットは各圧 延条件におけるギアを表し,数字の上二桁が圧延温度であ る.なお,下二桁は圧延1パスあたりの圧下率を表す. Table.2に圧延条件と板材の名称を示す.

ロール面には黒鉛系潤滑剤を圧延前に塗布した.なお, 鋳塊についても厚さ0.8mmに加工し諸特性を調べた.

Table.2 Rolling conditions of test sheet

| Gear  | Tempereture<br>of<br>roll<br>( ) | Thickness<br>(mm) | Designation | Total<br>rolling<br>reduction<br>(%) |
|-------|----------------------------------|-------------------|-------------|--------------------------------------|
| Α     | 250                              |                   | A2510       | 73.3                                 |
| В     | 250                              |                   | B2510       |                                      |
| С     | 250                              | 0.8               | C2510       | 70.0                                 |
| D     | 250                              |                   | D2510       |                                      |
| ingot |                                  |                   | ingot       | 0                                    |

# 3. 試験方法

### 3.1 組織観察

各圧延板,および鋳塊から10mm角程度の大きさに切り 出した試料を樹脂に埋め,エメリー紙で研磨した後バフ仕 上げを行った試験片にエッチング処理を行ない,組織観察 を行った.測定面は上ロール接触面,下ロール接触面,圧 延方向の垂直断面,圧延方向に平行な断面の4点から測定 を行った.上ロール接触面と下ロール接触面は,倍率は500 倍を用いて,チンマー法により平均結晶粒径を求めた.

## 3.2 硬さ試験

樹脂に埋め込んだ試験片の硬さをビッカース硬度計 (9.8N,15sec)で測定した.測定面は上ロール接触面,下 ロール接触面を測定面とした.

### 3.3 引張試験

各圧延板より圧延方向に対して0°,45°,90°の3方 向から試験片を採取した.また,鋳塊からも引張試験片を 採取した.試験温度は常温として,引張速度は 3mm/min とした.引張強さ,伸び,n値(加工硬化指数),r値(塑性ひ ずみ比)を測定した.1条件について3本試験を行ない,各 平均値を測定値とした.

## 3.4 エリクセン試験

各圧延板,および鋳塊から 75mmの円形プランク試験 片を作製した.試験は上ロール接触面側をポンチ側として, 試験速度は6.0mm/min,試験温度は常温とした.各条件3 回試験を行ない,その平均値を測定値とした.なお,ポン チと板の間の潤滑にはテフロンシート(厚さ0.1mm)を用い た.

Influence of asymmetric rolling conditions on the properties of AZ31 magnesium sheets

Daisuke IGARASHI, Makoto SUGAMATA, Junichi KANEKO and Masahiro KUBOTA

### 3.5 深絞り試験

圧延板から円形ブランク加工して試験片とした.試験は 上ロール接触面側をポンチ側として,直径30mmのポンチ で,ポンチ速度を10.0mm/minとして限界絞り比を求めた. 試験は常温で行ない,カップの破断あるいはしわが発生す ることなく絞り込まれたブランク直径をから,限界絞り比 を決定した.なお,ポンチとダイスの間それぞれにテフロ ンシートを用いて潤滑した.

### 3.6 集合組織試験

圧延板から直径 40mm の試験片をエメリー紙で#2000 まで表面研磨した後に,バフ研磨した.X線回折装置(株式 会社リガク製)を使用し,シュルツの反射法によって極点図 を求めた.

### 4. 試験結果および考察

### 4.1 圧延時における結果

### 4.1.1 圧延荷重

圧延時に計測された圧延荷重の一例として.B2510の条件における 6 枚の板の圧延荷重のパス毎の荷重の推移を Fig.1 に示す.いずれの板も,1パス目から2パス目にかけ 荷重が上昇し,以後,最終パスまで減少する傾向が見られた.また,他の板も同程度荷重で,ほぼ同じ挙動を示した. 4.1.2 圧延板の速度

# ロール出口において測定された圧延板速度の一例として B2510の条件について Fig.2 に示す. 圧延初期では,圧延 板が短く,正確な数値を得るに至らなかったが,最終パス に近づくにつれ 徐々に 3m/min 以下に収束した.これは, 上下ロールが等速度で回転する A2510 よりも遅く,また他 の異周速条件よりも速度が遅い結果であるため,異周速圧

#### 4.2 光学顕微鏡による組織観察

延の効果が現れていると推察される.

組織写真の一例として B2510 上ロール接触面側の組織 写真を Fig3 に示す.写真左方向が圧延方向である.いず れの圧延条件においても,ほぼ等軸粒の組織であり,圧延 によって微細化された組織と,圧延中に動的再結晶をおこ した組織の混粒が確認された.また,上ロール接触面,下 ロール接触面それぞれから得られた平均結晶粒径を Table.3 に示す.C2510 において,上ロール接触面と下ロ ール接触面の平均結晶粒径に差が見られたが,他の圧延条 件では,どちらの面もほぼ同程度の平均結晶粒径を示した. また,垂直断面,平行断面に対して行った組織観察におい ても,圧延方向へ伸びた結晶は観察されず,ロール接触面 から板中心層まで,ほぼ同程度の結晶を構成していた.ま た,鋳塊の結晶粒径は 1mmを超える大きさであり,平均結晶 粒径を求めることは困難であった.



Fig.2 Rolling speed (B2510)



Fig.3 Optical micrograph (B2510, upper roll side)

Table.3 Grain size of tested sheet (µm)

|       | Upper<br>roll side | Lower<br>roll side | average |
|-------|--------------------|--------------------|---------|
| A2510 | 6.63               | 8.7                | 7.67    |
| B2510 | 6.70               | 5.88               | 6.29    |
| C2510 | 7.12               | 10.11              | 8.62    |
| D2510 | 6.86               | 7.99               | 7.43    |

## 4.3 硬さ試験

各圧延板,上ロール接触面および下ロール接触面から計 測された硬さの平均を Fig.4 に示す.いずれの圧延条件に おいても鋳塊に比べて硬さが増加した.これは前述の結晶 組織の微細化によるものと考えられる.また、A2510 が最 も大きな硬さを示した。B2510 において,上ロール接触面 での強度が下ロール接触面に比べてやや高くなることが認 められた.

# 4.4 引張試験

### 4.4.1 引張強さ

Fig.5 に各圧延板の常温における引張強さを示す.すべての圧延条件で鋳塊よりも高い値を示した.同周速圧延である A2510 が最も大きな引張り強さを示した.また,異周速圧延である B,C,D,の各条件では上下ロールスピードの差が大きくなるにつれ、強度が小さくなるという結果が得られた。また,すべての条件において圧延方向に対する角度の違いによる強度の差は見られなかった.

### 4.4.2 伸び

Fig.6 に各圧延板の常温における伸びを示す.異周速圧 延である B2510 が最も大きな伸びを示した.また,いずれ の異周速圧延の条件においても鋳塊および同周速である A2510 よりも高い伸びを示した.また,異周速圧延の条件 では、上下ロールスピードの差が小さいほど伸びが少ない 傾向が見られた。A2510 では45°方向の伸びが最も大き く,B2510 では,45°方向の伸びが大きく,いずれの圧延 板においても若干の伸びの面内異方性が確認された.

### 4.4.3 r 値

Fig.7 に各圧延板の常温における r 値を示す . A2510 が 他の同周速圧延に比べ、最も大きな r 値を示した。また、 異周速圧延条件では、B2510 が最も小さな r 値を示し、 C2510、D2510 では同程度の r 値を示した。また、いずれ の圧延条件においても圧延方向に対して 90°方向に採取 した試験片が最も大きな r 値を示し、面内異方性が確認さ れた。

# 4.5 エリクセン試験

各圧延板の常温におけるエリクセン値を Fig.8 示す.異 周速圧延においては,圧延時の上下ロールのスピード差が 大きくなるにつれ,エリクセン値が減少する傾向が見られ た.これは,前述した圧延速度の影響でも述べたように, 異周速圧延の効果が最も大きくあらわれたためであると考 えられる.また,A2510と同程度の値を示し、鋳塊が最も 大きいエリクセン値を示した.

### 4.6 深絞り試験

Fig.9 に各圧延板の常温における限界絞り比を示す.圧 延条件の違いによって,限界深絞り比の大きな変化は見られなかった.深絞り性と立方晶金属材料についてはr値の









Fig.7 r-value of tested sheet

相関性にが知られているが、今回の実験では、r値の変化 による深絞り性への影響は見られなかった。また, 鋳塊に ついては現在調査中である.

## 4.7 集合組織試験

集合組織の一例として, Fig.10 に A2510 の極点図を示 す. 圧延条件によって, (0001)面の傾きや集積度等に,大 きな影響は見られなかった. 底面集合組織の深絞り性への 影響は広く知られているが、今回、深絞り性に大きな差が 見られなかったのは、集合組織の影響が大きかったのでは ないかと推察される。

# 5. 結言

- (1) 異周速圧延を行うことにより,圧延板への速度の影響 が見られた.しかし,上下ロールの速度比を大きく取 りすぎると低速側のロールはスリップし,異周速圧延 の効果がないことが分かった.
- (2) 硬さ,平均結晶粒径が上ロール側と下ロール側におい て異なる性質を持つ圧延条件が存在することが分か った.
- (3) エリクセン試験において,異周速圧延が張出し性に影響を与えることがわかった.ロールの速度比を大きくとることによって,張出し性が低下していく傾向である.



Fig.8 Erichsen-value of tested sheet



Fig.9 Limiting drawing ratio of tested sheet



Fig.10 (0001) Pole figure of tested sheet (A2510)