日大生産工(院) 〇大川 綾子 日大生産工 高橋 大輔・廣橋 亮・和泉 剛

【1.緒言】

光合成における光捕集アンテナ色素のクロ ロフィル誘導体や血液中のヘモグロビンやミ オグロビン中に存在するポルフィリン誘導体は, 生命活動において重要な役割を果たしている 機能性色素である¹⁾。また,この色素はミクロ 環境の変化によって自己会合し,規則性のあ るJ会合体などの組織ナノ構造体を形成するこ とから,生体模倣工学をはじめ工業的利用や 医療分野など多面的な展開がなされている。

このような機能性色素をほかの機能分子と 組み合わせると、アキラルな色素分子がキラ リティーを発現し、キラルな複合体²⁾となる特 徴的な性質がある。特に生体系では、タンパ ク質とポルフィリン分子が距離と配向を精密 に制御されたキラル複合体を形成し、光合成 など複雑な電子伝達および機能発現に寄与し ている。この構造や機構をモデル的に検討す ることは、ポルフィリンハイブリットの生体 機能を解明するうえで有意義であるとともに、 超分子化学を用いた機能性ナノ分子デバイス へのアプローチにつながると考えられる。

そこで本研究では、ポリペプチドを用いた 最も簡単なキラル複合体モデルにおける機能 と構造の関係に着目し、その基礎研究として、 ポルフィリンとポリペプチド間の複合体形成 に関して検討を行っている。今回は、水溶性 のポルフィリンを用いたキラル複合体モデル において、複合体形成に寄与するポリペプチ ドとの相互作用と分光特性の関係およびキラ リティー発現の最適条件について検討した。

【2.実験】

2.1 試料

ポルフィリン誘導体(Fig.1a)としては、汎用

Fig.1 Structure of TSPP (a) and PLL (b)

性の高いフリーベースのポルフィリンである tetrasodium - meso - tetra (4-sulfonatephenyl) porphyrin dodecahydrate(以下TSPP)を選択し,市販 品をそのまま使用した。TSPPを純水に溶解させ, NaOHまたはHClで所定のpHに調整した色素溶 液のモル吸光係数εは4.412×10⁵ [m² mol⁻¹]であっ た。

外部環境によってタンパク質を形成する3つ の基本構造(random coil構造, helix構造, sheet 構造)に転移可能な性質を持つポリペプチド (Fig.1b)のpoly-*L*-lysine hydrobromide(以下PLL) を選択した。PLL溶液は, PLLを純水に溶解さ せた後, NaOHまたはHClでpHを調整した。

2.2 分光測定

TSPP溶液とPLL溶液を混合して複合比の異 なる[PLL]/[TSPP]複合体を調製した。これらを 分光学的手法(吸収・蛍光・円二色性スペクト ル測定)を用いて解析し,複合体の分光特性に 関する知見を得た。

【3.結果および考察】

3.1 ポルフィリン濃度と複合比の関係

水溶液中におけるTSPPとPLLとの複合体形 成挙動の色素濃度依存性について検討するた めに吸収スペクトル測定を行った。その結果 をFig.2に示す。PLLと複合化することにより,

Study on the interaction between water-soluble porphyrin and polypeptide Ayako OHKAWA Daisuke TAKAHASHI, Ryo HIROHASHI and Tsuyoshi IZUMI 413nmのTSPPモノマーに由来するピークより も短波長側の399nmに複合体に由来するピーク が現れた。そこで、モノマー(413nm)と複合体 (399nm)のピークにおける吸光度変化を追跡し たところ、TSPPの添加に伴い[PLL]/[TSPP]=4 付近に屈曲点を示した。さらにTSPPを加えた ところ、吸光度は直線的に変化した。また、 屈曲点がみられた濃度より高い濃度領域での 直線的な吸光度変化は、TSPPだけの場合と類 似していた。このことからTSPPとPLLは見か け上1:4の複合体を形成し、過剰なTSPPは複合 体に関与せずモノマーとして遊離しているこ とが示唆された。

3.2 キラリティーのTSPP濃度依存性

複合化によるキラリティー発現の有無を円 二色性(CD)スペクトル測定から検討した。 Fig.3に示すように、PLLとの複合化により吸 収領域に誘起CD(ICD)が観察された。ICDは分 子のキラリティーを反映するひとつの指標で ある。よってPLLの存在下において、キラリティー を発現する複合体の形成が確認された。この ICDは典型的な分裂型コットン効果であるため, 色素間の相互作用が働く距離にTSPP分子が配 向していると考えられる。また、一般的にICD シグナルの強度が高いほど色素分子間の距離 が短いとされている³⁾ことから、色素の配向性 とICDシグナルの強度には相関性があると考え られる。そこで、PLL濃度を一定としたICDス ペクトル変化から濃度依存性について検討を行っ た。その結果, [TSPP]=0.5×10⁻⁵M([PLL]/ [TSPP]=4)まではTSPP濃度の上昇に伴ってICD シグナルが強くなったが、それ以上の濃度範 囲においてシグナルは弱くなった。よって, この複合体にはTSPP濃度依存性があり、キラ リティーを発現する最適条件が存在すること が示唆された。

【4. 参考文献】

- 1) 中嶋 直敏, 超分子科学, 化学同人, 243 (2004)
- 2) S.Ikeda, T,Nezu, and G.Ebert, *Biopolymers*, **31**, 1257(1991)
- 3) 原田 宣之, 有機合成化学, 41, 914(1983)

Fig.2 Changes in absorbance of TSPP solution in the presence of PLL with TSPP concentration. [PLL]= 2.0×10^{-5} M pH 7.0

(O) 413nm TSPP monomer (TSPP-PLL); (O) 399nm complex.

Fig.3 Circular dichroism and absorption spectra of TSPP aqueous solutions in the absence (a) and in the presence (b) of PLL at pH 7.0. [PLL]= 2.0×10^{-5} M, [TSPP]= 0.5×10^{-5} M.