各種建築材料への超臨界水処理の適用

日大生産工(PD) 山本 佳城 日大生産工 松井 勇 日大生産工 湯浅 昇 日大生産工 日秋 俊彦 日大生産工 辻 智也 日大生産工 田中 智

1 はじめに

超臨界水は,反応溶媒としての分解効率が 非常に高く,有機溶媒や焼却等による処理の 必要がない無害な廃棄物処理方法として注目 されている。本研究は,このような超臨界水 の特性を活かし,各種建築廃材の分別回収お よび再利用・再生利用技術として展開を図る ものである。

本研究では,これまでに,コンクリート構 造物を構成する各種材料に対して亜臨界水処 理¹⁾および超臨界水処理²⁾を施した場合の材 料の形態変化について検討してきた。ここで は,コンクリート構造物の解体時に大量に排 出されるセメントコンクリートを取り上げ, コンクリートおよびモルタルに超臨界水処理 を施した場合の細孔構造,圧縮強度等に及ぼ す影響について検討した。

2 試験概要

2.1 試料

試料の種類および形状を表1に示す。コンク リートは水セメント比の異なる4種類であり, 材齢28日(20, 封かん養生)に破砕,アセ トン処理およびD-dryを施したものである³⁾。 また,モルタルは水セメント比60%(砂セメ ント比3.0)の円柱供試体とし,材齢1日で脱 型した後,2日間の水中養生(20)を行い, 表乾状態にしたものである。

コンクリートおよびモルタルの使用材料は, 普通ポルトランドセメント,大井川産川砂利 および川砂(モルタルは2.5mm以下)である。

表1 試料の種類および形状

訂	形状				
川砂利 *	大井川産	$2.5 \approx 5.0$ mm			
コンクリート	W/C = 30 , 40 , 60 , 80 %	(破砕)			
モルタル	W/C = 60 %	20 × 40 mm			

* コンクリートの材料として使用

2.2 高温・高圧処理装置

図1に反応容器の形状・寸法を示す。反応 容器には 温度・圧力センサーを備えた HC-22 製の耐圧容器(内径 22×約165mm,内容積 62.9cm³)を用いた。また,反応容器の加熱に は,攪拌機付硝石槽(槽内寸法 W550×D550 ×H850mm)を使用した。

Application of Supercritical Water Processing for various building materials

Keiki YAMAMOTO, Isamu MATSUI, Noboru YUASA, Toshihiko HIAKI, Tomoya TSUJI and Satoshi TANAKA

2.3 温度および圧力条件

川砂利およびコンクリートの温度・圧力条 件は、いずれも450 、40Mpaとした。また、 モルタルでは、上記の条件に加えて、一般的 なオートクレーブ養生条件(180 、1Mpa)、 亜臨界条件(364 、20Mpa)および水の臨界 点(374 、22.1MPa)付近の温度・圧力条件 (384 、25Mpa)を検討対象とした。

なお,反応容器内の圧力は,所定の値が得 られるように,容器への投入水量を別途行っ た試験により定めて調整した。

2.4 処理方法

反応容器に試料および純水を封入し,容器 を硝石槽内で加熱した。容器内の温度および 圧力は,いずれの試料も加熱後10~15分間で 所定の値に到達し,それ以降はほぼ一定の値 を示す。処理時間は,所定の温度・圧力に到 達後の15分間とし,その後は,容器を水で冷 却して内容物を回収した。

2.5 試験項目

各試料の高温・高圧処理前後における変化 を目視観察,質量変化測定,細孔径分布測定 (水銀圧入法)およびSEM観察等により比較 検討した。また,モルタル円柱供試体を用い た圧縮強度試験を行った。各試料の試験項目 を表2に示す。

なお,質量変化,細孔径分布および圧縮強 度の試験結果は,各水準で試料数2個の平均値 を示したものである。また,細孔量は,単位 セメントペースト(コンクリートおよびモル タルの10%塩酸溶液への溶解量³⁾)当たりの 細孔量(有効細孔量)として評価した。

試験項目	目視 観察	質量 変化	細孔 分布	SEM 観察	圧縮 強度
川砂利					
コンクリート					
モルタル					

表 2 試験項目

3 試験結果および考察

3.1 目視観察結果

処理条件180 , 1Mpaのモルタル以外の試

料では,処理後にやや白色に変化する傾向が 見られたが,いずれの試料においてもひび割 れ,破損等は認められなかった。一方,回収 液には,いずれも粉状の微量な不溶残分が確 認された。

3.2 川砂利およびコンクリート

(1) 質量変化

図2は,処理後に回収した川砂利およびコン クリートにD-dryを施し,処理前後における質 量差から,式[1],[2]により求めた川砂利の 残存率 $R_A(g/g)$ およびセメントペーストの残 存率 $R_{cem}(g/g)$ を示したものである。ここで は,セメントペーストの残存率 R_{cem} を R_A およ び別途試験により求めたコンクリート試料の 溶解率 $D_C(g/g)^{3}$ を用いて推定した。

$$R_A = \frac{W_{Aaf}}{W_{Abe}}$$
[1]

$$R_{cem} = \frac{W_{Caf} - \{W_{Cbe}(1 - D_C) \cdot R_A\}}{W_{Cbe} \cdot D_C}$$
[2]

ここに、 W_{Abe} は処理前の川砂利の質量(g)、 W_{Aaf} は処理後の川砂利の質量(g)、 W_{Cbe} は処理前のコンクリートの質量(g)および W_{Caf} は処理後のコンクリートの質量(g)である。

図2より, *R_{cem}*は全体として水セメント比が 増加するほど減少する傾向にあり,ペースト 成分の一部が超臨界水処理により溶脱したこ とが推察される。また,骨材として使用した 川砂利にもわずかながら質量減少が認められ る。これらについては,今後,セメントペー スト単体の超臨界水処理や回収液および不溶 残分の分析等を行い検討していく予定である。 (2)細孔径分布

図3および図4は,超臨界水処理前後の細孔 径分布および総有効細孔量を水セメント比別 に比較したものである。処理前の細孔径分布 では,いずれも数10nmにピーク径が見られた

のに対して,処理後ではピーク径が10²nmオ ーダーへと大径側に移行し,処理後の総有効 細孔量は水セメント比が大きくなるほど増加 する傾向を示した。

(3) SEM 観察結果

図 5 に,超臨界水処理前後におけるコンク リートの SEM 観察結果の代表的な例として, 水セメント比 30 および 80%の写真を示す。処 理前では,表面が微細な水和物で覆われた大 小様々な結晶が凝集しており,水セメント比 が小さくなるほど,結晶が隙間なく配置され, 組織が緻密になる傾向が見られた。

一方,細孔径分布の結果から組織構造が粗 大化したことが示唆された処理後のコンクリ ートでは,一体化していた組織が多数の粒子 へと変化し,各々が独立するか凝集粒子群を 形成して,それぞれの間に多くの空隙が見ら れるようになった。この傾向は細孔径分布の 結果と一致する。なお,川砂利については, 超臨界水処理前後における明確な差異は見ら れなかった。

水セメント比 30%

水セメント比 80% 図 5 SEM 観察結果

- 3.3 モルタル
- (1) 圧縮強度

モルタルの圧縮強度試験結果を図6に示す。 処理条件180,1Mpaでは,処理前と比較し て圧縮強度が 30%程度減少したが,この様な 蒸気養生時の急激な温度上昇については,水 和生成物の転化によって強度が低下すること が指摘されている⁴⁾。一方,亜臨界条件では, 圧縮強度は処理前と同程度か若干増加した。 また,超臨界点を超えた 384 および 450 で は,約 20~30%の強度低下を示したが,これ らは,コンクリートのリサイクル工程におけ る破砕やモルタル除去等に対しては有利に働 く可能性が考えられる。

図6 圧縮強度

(2) 総有効細孔量

図7に総有効細孔量の測定結果を示す。圧 縮強度の低下が見られた処理条件180, 1Mpaでは細孔量は処理前と比較して同等か, わずかに増加する程度であった。一方,亜臨 界条件以上の温度・圧力では,図4に示した コンクリートの結果と同様に細孔量は増加し ており,温度・圧力の上昇に伴って徐々に増 加する傾向を示した。これらの増加傾向につ いては,水和生成物の脱水に起因する⁵⁾こと

が考えられ,この様な組織構造の変化と高温 高圧処理による水和の促進程度が,図6に示 した処理後の圧縮強度の差異に影響を及ぼし たものと推察される。

4 まとめ

セメントコンクリートおよびモルタルに対 して超臨界水処理を適用した結果,本試験の 条件の範囲では,以下の結論が得られた。 (1) 超臨界水処理後のコンクリートでは,水 セメント比が増加するほど細孔量は増加し, セメントペーストの質量は減少する。

(2) モルタルの細孔量は,温度・圧力の上昇 に伴って増加し,超臨界点を越えた温度・圧 力条件で圧縮強度は低下する。

参考文献

- 1)湯浅昇,松井勇,辻智也,申英珠:超臨界 水を用いたコンクリートのリサイクル技 術に関する一実験,第58回セメント技術 大会講演要旨,pp.294~295,2004
- 山本佳城,松井勇,湯浅昇,日秋俊彦,辻 智也,田中智:各種建築材料への超臨界水 処理の試行,第2回日本大学生産工学部学 術フロンティア・リサーチ・センター研究 発表講演会講演概要,pp.11~12,2004
- 3)吉野進也,湯浅昇,笠井芳夫,松井勇:有 効吸水量に基づく硬化コンクリートの水 セメント比,圧縮強度推定方法,日本建築 学会大会学術講演梗概集,pp.201~202, 2004
- 4) 坂部大,名和豊春,大久保正弘:高ビーラ イト系セメントを用いたモルタルの蒸気 養生における強度発現性,コンクリート工 学年次論文報告集,Vol.17,No.1,pp.469 ~474,1995
- 5) 湯浅昇, 笠井芳夫, 諸岡等, 杉崎茂: 高炉 および普通セメントペーストの短時間耐 熱性に関する実験研究, コンクリート工学 年次論文報告集, Vol.14, No.1, pp.987~ 992, 1992