NewHybrid 振動法による高層建物の非定常空力振動シミュレーションに関する研究 - その1システム概要と性能検証 -

2.1

日大生産工(学部)	名波 航 日大生産工(院)	平田 和也
(有)WindStyle	松山 哲雄 日大生産工	神田 亮
日大生産工	丸田 榮藏	

測定機構

1. 序論

近年の建築、施工技術の発展、また、社会的要求 により数多くの高層建物が建設されるようになって いる。構造物の高層化は、軽量化、低減衰化を伴う 傾向にあり、風荷重のような外力に対する振動を無 視できないものとなってくる。しかし、構造物の風 応答性状は、構造物に作用する非定常空気力に大き く影響を受け、非定常空気力は構造物の応答との相 互作用を含んでいるため、非常に複雑である。過去 の風洞実験による非定常空気力を把握する方法とし ては、主に自由振動法や強制振動法が用いられてき た。

筆者等は、数値実験と風洞実験を組み合わせた新 たな手法としてハイブリッド振動法(以下H.V.T.)を提 案¹⁾し、開発²⁾を行ってきた。過去の研究では、相互 作用を含む振動現象を再現でき、また、風外力に対 する弾塑性応答解析を追跡できるなどの成果をあげ ている。しかし、加振時の慣性力が測定値に含まれ、 また、高速制御に関するリアルタイム性についても 完全な保証がされていないのが現状である。以上の ことを踏まえて、本論文では、H.V.T.の精度向上のた め、制御方式を変位制御から速度制御に変え、3次元

1 自由度ロッキング振動をシミュレーションした。

2. ハイブリット振動システム

H.V.T.は、ハイブリッド式実験手法の一種で、コン ピュータ内で Step-by-step の数値積分を、随時、モデ ルからの圧力測定値を用いながら行う。特に、圧力 センサーを用いた H.V.T.をニューハイブリッド振動 法(以下 N.H.V.T.)と称す。開発するシステムの構成図 を Fig.1 に示す。

システムは、大きく分けて、風圧力と模型の変位 を測定する測定機構、応答値をモデル上で再現する 制御機構、応答計算を行う応答計算機構がある。各 機構には、主なパーツとして、測定機構には、圧力 計、変位計、A/D 変換機が、制御機構には、D/A 変 換機、サーボモータ、加振治具が、応答計算機構に は、Step-by-step の計算を行うコンピュータプログラ ムがそれぞれ含まれる。本章では、これらの機構の 具体的役割などについて述べる。

ここで用いる模型は、寸法が、100mm×100mm× 500mmの角柱で、足元がロッキング振動するように 支持されている。模型表面は、アクリル製であり、 合計で 60 個の圧力センサーが配置されている。 圧力 センサーは、模型に作用する風圧力を測定するため のものである。センサーの取り付け状態をFig.2 に示 す。圧力センサーは、模型の加振時に、同時に加振 されるので、圧力感知部分が圧力と同時に慣性力を 感知する。この慣性力は、シミュレーションの精度 を低下させるため、本システムでは、慣性力の除去 が可能な圧力センサーを導入する。圧力センサーの 詳細な仕組みを、Fig.3 に示す。このセンサーは、セ ンサー内に圧力感知部分を2つ有し、それらが、並 列に配置されている。感知部分の一方は、模型表面 圧+慣性力-室内圧を感知するようになっている。 他方は、慣性力+室内圧から室内圧を自動的に差し 引かれ、慣性力のみを感知するようになっている。 最終的に、2つのセンサーから測定された値を電気 的に差し引き、表面圧室内圧を検出できるように なっている。

New Hybrid Vibration Technique for simulation of unsteady aerodynamic phenomena on high-rise building -Part 1 System Concept and Performance Verification -

Wataru NANAMI, Kazuya HIRATA, Tetsuo MATSUYAMA, Makoto KANDA, and Eizo MARUTA

2.2 制御機構

なるべくスムーズな挙動をさせ、加振時の慣性力を 抑えるため、また、出来るだけ現実に近い速度状態 を模型上に再現するため、本システムでは、速度制 御方式を採用した。この制御方式の概念図をFig.4に、 フローチャートをFig.5に示す。この制御方式は、速 度の適性値を制御できるだけでなく、変位も、同時 に適性値に制御できるのが特長である。n+1 ステップ における制御の目標速度値 \dot{x}_{n+1}^{t} は、下式によって定 められる。

$$\dot{x}_{n+1}^{t} = \frac{\widetilde{x}_{n+1} - x_{n}^{m} - x_{n}^{c}}{\Delta t - \Delta t^{e}}$$
(1)
ただし

$$x_{i}^{c} = \dot{x}_{i}^{t} \cdot \Delta t$$

式中の変数の詳細については、Fig.4 を参照。前ス テップで実際に制御された変位(以下、制御変位)が目 標とした変位(以下、目標変位)と同値であれば、 さらに、 t_n 秒で遅れなく n+1 ステップの制御が開始さ れれば、式中 $x^m = x'$ また、x' ť は、ゼロとなる。 結果、 $\dot{x'_{n+1}} = (x_{n+1} - x_n) / \Delta t$ となり、応答計算から求 められる値のみで、目標速度値を決定することがで きる。すなわち、補正などは必要ないことになる。 しかし、実際の制御では、目標変位と制御変位は、 一致することは極稀であり、また、各機構に対する わずかな遅れは、避けることができない。目標変位 と制御変位をいつもほぼ一致させ、かつ、滑らかで 速度応答値の再現性も確保できる制御を実現するに は、Fig.4 に示すような目標値の補正を行う。

Controled

-- Targeted

\dot{x}^t : Target Velocity Δt : Integral Time Interv \tilde{x} : Opretor Phase Δt^e : Time lag of Control P : Air Pressure $\pi \pi + 1$, $\pi \pi + 1$, $\pi \pi + 1$	x^{c}	: Control Error	x^m	: Measured Value
\widetilde{x} : Opretor Phase Δt^e : Time lag of Control P : Air Pressure $\pi r + 1$, $2r + 1$, $2r + 1$, $3r + 1$, $3r$	\dot{x}^{t}	: Target Velocity	Δt	: Integral Time Interval
P : Air Pressure and 1. C	ĩ	: Opretor Phase	Δt^{e}	: Time lag of Control
n, n+1: Step on the discrete	Р	: Air Pressure	<i>n</i> , <i>n</i> +	1: Step on the discrete time

Fig.4 Conceptual Diagram of Control

2.3 応答計算機構

N.H.V.T.では、測定および制御を行いながらその値 を用いて、応答値を計算する必要がある。対象とす る現象が非線形であるため、ここでは、応答計算を 行うために、逐次積分法を用いる。逐次積分を N.H.V.T.で行う際には、いくつかの制約があるが、こ れらの制約を受けてもなお積分計算が可能で、かつ、 安定性、精度に優れている手法として、 O.S.法を 採用した。この手法を以下に示す。また、 O.S. 法を用いた本システムのフローチャートをFig.6に示 す。

$$\begin{split} M\ddot{X}_{n+1} + (1+\alpha)C\dot{X}_{n+1} - \alpha C\dot{X}_{n} \\ + (1+\alpha)(K^{T}X_{n+1} + K_{n+1}^{E}\widetilde{X}_{n+1}) \\ - \alpha(K^{T}X_{n} + K_{n}^{E}\widetilde{X}_{n}) \\ = (1+\alpha)F_{n+1} - \alpha F_{n} \\ \widetilde{X}_{n+1} = X_{n} + \Delta t\dot{X}_{n} + \Delta t^{2} \bigg(\frac{1}{2} - \beta\bigg)\ddot{X}_{n} \end{split}$$
(2)

$$X_{n+1} = \widetilde{X}_{n+1} + \Delta t^2 \beta \ddot{X}_{n+1}$$
(3)

$$\dot{X}_{n+1} = \dot{X}_{n} + \Delta t \left\{ (1 - \gamma) \ddot{X}_{n} + \gamma \ddot{X}_{n+1} \right\}$$
(4)

$$\beta = \frac{(1-\alpha)^2}{4}, \gamma = \frac{1}{2} - \alpha$$
(5)

ここに*M*:質量、*C*:減衰係数、*F*:風外力、 *t*:時間刻み、^X·X·X·X</sub>:加速度・速度・変位・

予測子变位、K^E:非線形剛性、K^I:線形剛性

Fig.6 Flowchart of Analysis System

3. システムの基本性能の検証

本章では、開発したシステムの性能に関する検証 を行う。まず、個々の機器や各機構別に実施する。 次に、複数の機構を連動させて行い、最後に全機構 を接続して、構造物の振動現象を再現する。

3.1 測定器及び計測機構の検証

今回、速度制御方式(式(1)参照)にしたため、x^mの精 度は、 x 及び、x'の精度に大きく関わってくる。よ って、ポテンショメータの精度を確かめる必要があ る。ここでは、加振器を正弦波によって振動させ、 その動作をポテンショメータ及び、レーザー変位計 によって同時測定した。レーザー変位計は、以前に 振幅及び、位相について問題がないことを確かめて いる。ポテンショメータとレーザー変位計の波形は ほぼ一致しているため、ポテンショメータの精度は 高いことがわかる。Fig.7 にポテンショメータ及び、 レーザー変位計の時刻歴を示す。

また、模型内部に設置されている差圧計と、模型 表面の測定孔とは、長さ 50mm の導圧チューブで繋 がっている。NH.V.T.は、リアルタイムで制御し、非 定常空気力を捉える必要があるため、導圧チューブ による伝達特性を考慮して、適切に計測値 x^mを補 正しなければならない。Fig.8 に導圧チューブを通る 前と、通った後の振幅の比を表した伝達特性、位相 遅れの伝達特性を示す。Fig.8 に示すように、振幅比 は最大でも 1.05 以下である。そのため、導圧チュー ブによる振幅の影響は、ほぼ無視しても影響ないと いえる。位相遅れは、100Hz で 2Deg ずれていること がわかった。すなわち、60 µ sec、位相遅れがあるこ ととなる。この遅れを考慮し、 ťを定め、リアルタ イムで補正する必要がある。

Fig.8 Transfer Function of Air Pressure Tubes

3.2 加振器を含む制御機構の検証

ここでは、速度制御におけける変位の精度を確か めるため、常に0を目標値とする、いわゆるゼロフ ォールド制御を行う。システムでは、Fig.9に示す黒 太線の経路のみを作動させる。制御目標速度は、式(1) に示すように、現在の変位 x[™]を常に考慮して決定 されているため、変位は、速度を常に目標にしても 正しく保たれているはずである。Fig.10 に補正計算を 行わない場合のポテンショメータ、D/A の時刻歴波 形、Fig.11 に行った場合の時刻歴波形を示す。補正計 算を行わない場合、ただ速度のみを追従するだけで、 変位に生じた誤差が補正されず、変位がドリフトし ている。補正計算を行うと、この現象が解消され 0 を保ち続けられる。よって、速度制御における制御 機構は、速度を目標とした場合でも変位のゼロ軸が ほぼ正しく保たれていることがわかった。

Fig.9 Detail of Control System Test

3.3 制御機構と応答計算機構を連動させた検証

N.H.V.T.で、1 自由度系弾性体の振動シミュレーシ ョンをする場合、システムに入力される外力と、出 力される応答の振幅と位相には、1 自由度系の伝達関 数に示されるような関係がなくてはならない。もし そうでなければ、システムに何らかの欠陥があると 考えられる。ここでは、制御機構と応答計算機構を 連動させ、伝達関数が理論どおりなるかを確かめる ことにより、各機構の連動性を含めた検証を行う。 設定するモデルの振動パラメータは、回転慣性 I= 0.07292Nmsec²、固有円振動数 $_0$ = 31.4rad/sec、h = 2.0%で、 t は 2msec である。D/A 変換は、 tと 同時間隔で式(1)に示すように ^ジ_{n+1} に見合う電圧を 出力する。外力として入力する信号は、0.06Hz から 250Hzまで、一定のパワーを有する一様乱数とした。

目標変位の時刻歴波形と、制御変位の時刻歴波形を Fig.13に示す。また、それらの振幅の伝達関数をFig.14、 位相の伝達関数を Fig.15 に示す。結果はかなり良好 である。また、紙面上掲載しなかったが、他の振動 パラメータで行った場合も、同様な傾向である。こ れらの結果より、個々の機構のみならず2つの機構 を連動させた場合でもシステムの作動には、問題が ないことが確かめられた。

Fig.12 Detail of Control and Analysis System Test

3.3 三つの機構を連動させた場合の検証

最終的な検証である風洞気流中における、モデル の空力振動をシミュレーションする前に、全機構を 連動させ、静止気流中における振動現象をシミュレ ーションし、各機構の連動性を含めたシステムの検 証を行う。シミュレーションは Fig.16 の黒太線の部 分を連動させて行う。シミュレーションは、初期変 位 $x_0 = 0.068$ rad を与え、その振動を再現した。振動 現象は自由振動となるのが安易に想像できる。振動 パラメータは、回転慣性 I = 0.07292Nmsec²、固有円 振動数 $_0 = 31.4$ rad/sec、h = 2.0% である。もし、セン サー等にノイズが発生すれば、応答値はゆがみ、自 由振動波形は正確に再現されない。シミュレーショ ンして得られた変位応答の時刻歴波形を Fig.17 に示 す。図中は、計算された応答値と、モデル上で再現 された応答値を重ねて示す。また、自由振動波形の ピーク値に漸近している曲線は、振動パラメータか ら求めた振幅の曲線 e^{h ot}である。計算された応答 値と、測定された応答値はよく一致し、ピーク値は 曲線にもよく漸近している。これらの事実から、加 振によりセンサーに発生するノイズなどによる精度 の低下もなく、システムは全機構を連動させても、 良好に作動することがわかった。

Fig.16 Detail of All System Test

4.まとめ

N.H.V.T のシステムの開発を行い、システムの概要、 また、各機構の役割を述べるとともに、検証を行っ た。その結果、本システムでは、良好な精度で振動 を再現できることがわかった。その2、その3では、 本システムを用いて風洞気流中における角柱の空力 振動現象シミュレーションを行う。

【参考文献】

1)M.Kanda,A.Kawaguchi,T.Koizumi,E.Maruta:

A new approach for Simulating aerodynamic vibrations of structures in a wind tunnel-development of an experimental system by means of hybrid vibration technique,Journal of Wind Engineering and Industrial Aerodynamics 91 (2003)1419-1440

2)I.Hirata,T.Matsuyama,M.Kanda,E.Maruta:New Hybrid Vibration Technique for Simulating Aerodynamic Vibration of Structures in a Wind Tunnel,Report of the research institute of industrial technology nihon university 3)中島正愛他:実験制御誤差制御機能を有したサプストラ クチャ仮動的実験のための数値積分法,日本建築学会構造 系論文報告集 第 454 号(1993), 61-71