走行荷重を受ける RC 床版の押抜きせん断耐力に関する実験研究

日大生産工(院)	○中野孝紀	日大生産工	木田哲量
日大生産工	阿部 忠	日大生産工	澤野利章

1. はじめに

鋼道路橋鉄筋コンクリート(RC)床版は、大型自動車など の輪荷重が直接に作用するため、ひび割れ損傷を受けやす い部材である。この RC 床版の終局耐力は、一般的に押抜 きせん断耐力として解析されており、これまでに多くの研 究機関で押抜きせん断耐力に関する実験研究が行われて、 押抜きせん断耐力式が提案されてきた^{1),2)}。しかしながら, この押抜きせん断耐力式の多くは静荷重を想定したもの で、実橋の RC 床版の破壊様式³⁾は、走行荷重の載荷によ り橋軸直角方向、橋軸方向にもひび割れが発生し、格子状 のひび割れを形成している。さらに走行荷重が作用するこ とにより、貫通ひび割れへと進展し、橋軸直角方向にはり を並べた状態、すなわち床版ははり状化し、最終的に押抜 きせん断破壊に至っている。以上のことからも、道路橋 RC 床版の損傷の主要因は走行荷重であると考えられるが、 走行荷重が作用した場合の押抜きせん断耐力については 十分に解明されていないのが現状である。

そこで、本研究では RC 床版に対する静荷重実験、走行 荷重実験を行い、それぞれの実験耐力、破壊状況から走行 荷重が RC 床版に及ぼす影響を検証する。また、既往の押 抜きせん断耐力式との適合性を考察するとともに、走行荷 重実験の破壊状況から複鉄筋配置 RC 床版に走行荷重が作 用した場合の押抜きせん断耐力式を提案する。

2. 使用材料および供試体寸法

2.1 使用材料

供試体のコンクリートには普通ポルトランドセメント, 最大寸法 20mmの粗骨材を使用する。なお,コンクリート の圧縮強度は材齢 28 日のものである。また,鉄筋は SD295A, D10を使用した。材料の力学特性値を表-1に示 す。

表 - 1	材料の	力学特性值
-------	-----	-------

2.2 供試体寸法

供試体寸法は、全長147cm、支間120cm、張り出し部13.5cm, 厚さ13cmとする。鉄筋はD10を軸直角方向に10cm間隔 で有効高さを10.5cm、軸方向にはD10を10cm間隔で有効 高さを9.5cmの複鉄筋配置とした。圧縮鉄筋は軸方向、軸 直角方向にそれぞれ引張側鉄筋量の1/2を配置する。供試 体の寸法および鉄筋の配置を図-1に示す。

3. RC 床版の押抜きせん断実験概要⁴⁾

3.1 実験装置

本実験に用いる走行振動試験装置(図-2)は、鋼製の反力フレームのはりに車輪(直径 40cm,幅 25cm)を取り付けた油圧式の構造物振動疲労試験装置を鋼製反力フレームに固定し、クラ

Experimental study on Punching Shear Load-Carrying Capacity of RC slab under Running load by Takanori NAKANO, Tetsukazu KIDA, Tadashi ABE and Toshiaki SAWANO

ンクアームとモータにより供試体を取り付けた台車を水 平方向へ往復運動させる構成である。その最大荷重は 300kNである。

3.2 実験方法

(1)静荷重実験(static load(S))

静荷重実験は、供試体の中央に車輪を停止した状態で載荷する。供試体の支持は、浮き上がり防止設けない4辺単純支持とした。荷重の大きさは5.0kN ずつ増加させる段階荷重とする。(図 - 3(a))

(2)走行荷重実験(running load(R))

走行荷重実験では図 - 3(b)に示すように、供試体の中央 に車輪を停止した状態で載荷させ、載荷位置から両支点方 向に一往復走行させ、元の支間中央に停止させる。載荷方 法は1走行ごとに 5.0kN ずつ増加させる段階荷重とする。 なお、走行速度は、一往復2.4m を13sec で走行する 0.18m/s とする。

表-2 実験耐力および破壊モード

供試体	実験耐力	平均耐力	耐力比	破壊モード
	(kN)	(kN)	R/S	100.000 - 1
120×13-S-1	221.3	222.4		押抜きせん断破壊
120×13-S-2	225.4	223.4		押抜きせん断破壊
120×13-S-3	235.2	235.2		押抜きせん断破壊
120×13-R-1	170.7	169.5	0.75	押抜きせん断破壊
120×13-R-2	166.2	108.5	0.75	押抜きせん断破壊
120×13-R-3	172.1	172.1	0.73	押抜きせん断破壊

4. 実験結果

4.1 実験耐力

実験耐力および破壊モードを表 - 2 に示す。破壊モード は、押抜きせん断破壊となった。表 - 2 より、120×13-S-1、 2 の静荷重実験の平均最大耐力は 223.4kN, 走行荷重実験 の 120×13-R-1、2 の平均最大耐力は 168.5kN となった。こ こで、走行荷重の場合の静荷重に対する耐力比(R/S)は 0.75 となり、走行荷重が載荷することによって耐力が 25%低下 した。また、S-3 においては、静荷重実験の平均最大耐力 は 235.2kN となり、走行荷重実験の R-3 においては 172.1kN となった。走行荷重の場合の静荷重に対する耐力比(R/S) をみると 0.73 となり、走行荷重が作用することにより耐力 が 27%低下した。

4.2 破壞状況

(1) 静荷重実験

図 - 4(a)より,静荷重実験における供試体上面をみると, 車輪の設置面積は25cm×4cmであるが,降伏線の影響に より,25cm×20cmで押し抜かれている。また,下面は降伏 線方向にひび割れが発生している。次に a-a 断面は,車輪 の直下から約 30~45°, b-b 断面は車輪載荷位置から 45~ 50°の拡がりを持つせん断破壊面を形成した。最終的に押 抜きせん断破壊に至った。

(2) 走行荷重実験

図 - 4(b)より,走行荷重実験における供試体上面は走行 面のひび割れが著しい。下面のひび割れは軸方向,軸直角 方向に 10cm 間隔で発生し,格子状を形成している。次に, a-a 断面は静荷重の場合と同様に,車輪直下から 30~35° の拡がりを持つせん断破壊形状を示した。また,b-b 断面 では 10cm 間隔で発生したひび割れが圧縮鉄筋位置まで進 展し,はり状化と同様な形状を示している。最終的には, 押抜きせん断破壊となった。

5. 押抜きせん断耐力

5.1 押抜きせん断耐力式

本実験において算出する理論押抜きせん断耐力は、土木 学会式、松井らの提案した押抜きせん断耐力式を用いる。 1)土木学会式⁵⁾

 $V_{pcd} = \beta_{a} \cdot \beta_{p} \cdot \beta_{r} \cdot f_{pcd} \cdot u_{p} \cdot d/\gamma_{b}$ (1) ここで、 β_{a} : 寸法効果の係数、 β_{r} : 載荷板周長の影響 を表す係数、 β_{p} : 鉄筋比の影響を表す係数、 f_{pcd} : コンク

リートの強度の影響を示す係数,u:載荷板の周長, u_{ρ} : 載荷板から d/2 離れた断面周長(mm),d:有効高さ(mm), f'_{a} :コンクリートの圧縮強度(N/mm²), γ_{δ} :部材係数 2)松井らの提案した押抜きせん断耐力式¹⁾

せん断強度式は、モードⅡ型の一面せん断試験装置を用 いて新一面せん断試験を行った結果からせん断強度式を 用いることとする。⁰

$$V_{cp} = f_{cv0} \{ 2ax_d + 2(b + 2x_d)x_m \} + f_i \{ 2(2C_d + 2d_d + b)C_m + 2(a + 2d_m)C_d \}$$

$$f_{cv0} = 0.688 f_{cv0}^{1.0610}$$
(2)

 $f_t = 0.269 f'_c^{2/3}$

はり状化後の押抜きせん断耐力式")

 $V_{cp} = 2B(f_{cv0} \cdot x_m + f_t \cdot C_m)$ (3)

 $B = b + 2d_d$

ここで、 f_{co} 、 f_i : コンクリートの最大せん断応力度、 最大引張応力度(N/mm²)、a、b:載荷板の主鉄筋、配力 鉄筋方向の辺長(mm)、 x_m 、 x_d : 引張主鉄筋、配力鉄筋

表-3 実験耐力と理論耐力の適合性

	宝驗耐力		理論而	力 (kN)	
供試体	(kN)	$V_{\text{pcd}}(\vec{\texttt{xl}})$	<u>実験耐力</u> 理論耐力	V _{cp} (式2, 3)	<u>実験耐力</u> 理論耐力
120×13-S-1	221.3	101.7	1.154	210.4	1.009
120×13-S-2	225.4	191./	1.176	219.4	1.027
120×13-S-3	235.2	199.8	1.177	232.5	1.017
120×13-R-1	170.7	101.7	0.890	76.4	2.234
120×13-R-2	166.2	191./	0.867	/0.4	2.175
120×13-R-3	172.1	199.8	0.861	80.9	2.127

方向の中立の深さ(mm), d_m , d_a :主鉄筋, 配力鉄筋の有 効高さ(mm), C_m , C_a :主鉄筋, 配力鉄筋からのかぶり厚 さ(mm), f'_a :コンクリートの圧縮強度(N/mm²), B:は り状化後の貫通ひび割れ間隔(mm)

5.2 理論耐力との適合性

各式より算出した理論耐力を表 - 3 に示す。また,載荷板の辺長には,車輪の接地面積が 25cm×4cm であることから,主鉄筋方向の辺長 25cm,配力筋方向 4cm として載荷板辺長を算出する。

1)土木学会式

式(1)より算出した理論耐力は,静荷重実験 120×13-S-1, 2 の場合で 191.7kN となり,実験耐力と理論耐力との比較 は,それぞれ 1.154, 1.176 倍, S-3 の場合は 199.8kN で, 1.177 倍となり,実験耐力が理論耐力を上まわった。走行 荷重実験 120×13-R-1,2 の場合の耐力比は 0.890, 0.867 倍, R-3 で 0.861 倍となり,実験耐力が理論耐力を下まわった。 2)松井式

松井式(式 2)による理論耐力は 219.4kN であり, 120× 13-S-1, 2の耐力比は 1.009, 1.027 倍, S-3 では 232.5kN, 1.017 倍となり, 適合性の良さを示した。また, 走行荷重 が載荷した場合の理論耐力(式 3)は 76.4kN となり, 120× 13-R-1, 2の耐力比 2.234, 2.175 倍, R-3 においては 80.9kN, 2.127 倍と実験耐力が大きく理論耐力を上まわった。

5.3 走行荷重載荷の押抜きせん断耐力式

走行荷重が作用した場合は実験耐力が理論耐力を下ま わる結果となったが、これは土木学会式では走行荷重を想 定したものではないことが挙げられる。よって走行荷重が 作用した場合の耐力式の提案が必要であると考えられる。 ここで、RC 床版の耐力低下には走行荷重によるひび割れ の進展の違いが考えられる。すなわち、走行荷重が繰り返 し作用することによるはり状化により荷重分配能が低下 したことが原因であると考えられる。文献8)では、単鉄筋 配置のRC 床版に走行荷重を載荷させた場合の破壊状況に 着目し、応力分布を曲げひび割れが伸展する中立軸までの 分布として、耐力式を提案している。ここで、複鉄筋配置 のRC床版に走行荷重が作用した場合の破壊状況は、図 -4(a)に示すようにひび割れ間隔が 10cm となり、そのひび 割れが圧縮鉄筋位置まで達し、はり状化と同様な形状を示 している。そこで、はり状化におけるはり幅、すなわちせ ん断抵抗断面を下面ひび割れが進展する圧縮鉄筋図心位 置までを仮想破壊断面とした断面周長を算出する。すなわ ち、図 - 5(a)から図 - 5(b)のように u_{μ} 'を載荷板から圧縮鉄 筋の図心位置である u_{μ} '離れた位置とする。よって、走行 荷重の場合の押抜きせん断耐力式 $V_{pol(R)}$ を次式として与え る。

 $V_{pcd} = \beta_{d} \cdot \beta_{p} \cdot \beta_{r} \cdot f_{pcd} \cdot u_{p} \cdot d / \gamma_{b}$ $u_{p}' = u + 2\pi \cdot d'$ (3)

ここで, *d*': コンクリート上縁から圧縮鉄筋図心位置ま での距離(mm), *u_e*': 載荷板から*d*'離れた断面周長(mm)

修正後の理論押抜きせん断耐力を表 - 4 に併記する。走 行荷重実験における理論耐力は 157.5kN となり,実験耐力 と比較すると 120×13-R-1,2 でそれぞれ 1.080,1.060 倍と なり,実験耐力と理論耐力は近似した。R-3 においても理 論耐力は 164.7kN となり,実験耐力と理論耐力を比較する と,1.045 倍と実験耐力と近似した。

6. まとめ

①RC 床版に走行荷重が作用した場合は,静荷重の場合に 比して,25~27%耐力が低下した。

②静荷重の場合は押し抜きせん断破壊となり、下面のひび 割れは降伏線方向に発生している。走行荷重の場合も押抜 きせん断破壊となり、下面のひび割れは格子状を形成して いる。b-b 断面は走行荷重によってはり状化と同様な破壊 形状を示している。

③押抜きせん断耐力は,静荷重の場合には,土木学会式は 実験耐力が理論耐力を上まわり,松井式は実験耐力と近似 した。また,走行荷重の場合には,土木学会式は実験耐力 が理論耐力を下回り,松井式は理論耐力が大きく上まわっ た。

④載荷板周長を圧縮鉄筋の図心位置までと修正して理論 耐力を算出した結果,走行荷重の場合にも,実験耐力と理 論耐力が近似した。

(11-1)(1-1)(三)(三)(三)(三)(三)(三)(三)(三)(三)(三)(三)(三)(三)		理論耐力 (kN)			
供試体	天映[11]7] (kN)	V _{pcd} (式1)	<u>実験耐力</u> 理論耐力	V _{pcd(R)} (式4)	<u>実験耐力</u> 理論耐力
120×13-S-1	221.3	101.7	1.154		
120×13-S-2	225.4	191.7	1.176		
120×13-S-3	235.2	199.8	1.177		
120×13-R-1	170.7	101 7	0.890	157.5	1.080
120×13-R-2	166.2	191.7	0.867	157.5	1.060
120×13-R-3	172.1	199.8	0.861	164.7	1.045
		荷板		<u></u>	載荷板
			a' 1		`. .
d v				/ 1	
d i		<u> </u>			
	a		<u> </u>	d'	
	a 	d2 ↓ ↓ ↓ ↓		(b) 走行荷	

表-4 提案式による理論耐力

「参考文献」

 前田幸雄,松井繁之:鉄筋コンクリート床版の押抜きせん断耐荷力の評価式,土木学会論文集,第348号,V-1, pp.133-141,1984.

 2)角田与史雄,井藤昭夫,藤田嘉夫:鉄筋コンクリートス ラブの押抜きせん断耐力に関する実験的研究,土木学会論 文報告集第,229号,1976.

3) たとえば、松井繁之:床版の技術開発、橋梁と基礎, pp84-94, 1997.

 阿部忠,木田哲量,澤野利章,水口和彦,近藤崇:走 行振動試験装置の性能検証に関わる RC はりの走行実験研 究,日本大学生産工学部研究報告,第34巻,第2号,pp.1-10, 2001,12.

5) 土木学会:コンクリート標準示方書,土木学会,2002.
6) 阿部忠,木田哲量,高野真希子,澤野利章,加藤清志: 静荷重,走行荷重を受ける RC 床版の押し抜きせん断耐力, 構造工学論文集, Vol.50A, pp.919-926, 2004, 4.

 松井繁之:移動荷重を受ける道路橋 RC 床版の疲労強度 と水の影響について、コンクリート工学年次論文報告集、
 9-2、1987.

8) 伊佐和人,木田哲量,阿部忠,澤野利章:走行荷重およ び振動荷重が作用する RC 床版の力学挙動,セメント・コ ンクリート論文集, No.57, pp.374-379, 2003.