メカニカルアロイング法による Al-Mg₂Si-酸化物系 P/M 材の性質

日大生産工(院) 日大生産工 椎名 克臣 菅又 信,久保田 正広,金子 純一

1. 緒言

メカニカルアロイング(以下 MA)法は,固相 状態での合金化プロセスであり,混合粉末に機 械的エネルギを加えることにより,目的の合金 化をはかる方法である.MA法の特徴は,溶解 鋳造法では合金化が困難な融点差や比重差が 大きい金属同士や金属と酸化物や炭化物との 合金化が可能である.また,固相反応を利用し て,金属マトリックス中で酸化物を分解させて, 生成した金属酸化物や金属間化合物を微細に 分散させることにより高強度化を図ることが できる¹⁾.

本研究では,純 Al に金属間化合物 Mg2Si と 遷移金属酸化物(Cr2O3, Fe2O3, MnO2)粉末を それぞれ添加して MA 処理を行った. MA 処 理により Mg2Si や金属酸化物が Al マトリック ス中に微細分散した粉末を作製する.得られた 粉末を固化成形し,ホットプレス(HP)と熱間押 出により P/M 材とし,硬質粒子が微細分散する ことにより高い硬さと強さを有する Al 基材料 の作製を目的とした.

2. 実験方法

2.1 原料と配合組成

MA 処理する粉末の配合組成を Table 1 に示 す.原料粉末は,1 チャージ分 700g とし,添 加する金属酸化物(Cr₂O₃, Fe₂O₃, MnO₂)の量 は,Cr,Fe,Mn が 8mass%となるようにした. 純 Al 粉末に 20mass%の Mg₂Si 粉末とそれぞ れの金属酸化物粉末を添加して MA 処理した. また,比較材として純 Al 粉末に Mg₂Si 粉末の みを添加した混合粉末も MA 処理した. Table 1 Starting composition for mechanical alloying.

System	System Material(mass%)	
AI-Mg ₂ Si	AI-20Mg ₂ Si	AM
AI-Mg ₂ Si-Cr ₂ O ₃	$AI\text{-}20Mg_2Si\text{-}11.70Cr_2O_3$	AMCR
AI-Mg ₂ Si-Fe ₂ O ₃	AI-20Mg ₂ Si-11.44Fe ₂ O ₃	AMFE
AI-Mg ₂ Si-MnO ₂	AI-20Mg ₂ Si-12.66MnO ₂	AMMN

2.2 MA 処理および P/M 材の作製

MA 処理には, Fig.1 に示す乾式アトライタ ー型ボールミルを用いた.容量 5000mlのタン ク内に直径 9.5mm の鋼球(材質:SUJ-2)を 17.5kg および原料粉末 700g を装入し,Ar ガス 雰囲気中で 30hMA 処理を行った.また,MA 中の粉末の燃き付き防止剤としてメタノール を適量注入した.得られた MA 粉末は,Ar ガ ス雰囲気にて Al 円筒缶に充填し,500MPa で 冷間プレスして圧粉体とした.圧粉体を 673K で 1h 真空脱ガス処理した後,100MPa で 1h 加 圧して HP 体とした.その後,Al-Mg2Si 系では,

Fig.1 Schematic illustration of attritor type ball mill.

Properties of P/M materials of Al-Mg₂Si-oxide systems processed by mechanical alloying

Katsuomi SHIINA, Makoto SUGAMATA, Masahiro KUBOTA and Junichi KANEKO

773K で 0.5h, Al-Mg₂Si-Fe₂O₃系では 773K で 1.5h,その他の系では 823K で 1.5h 予備加熱し た HP 体を温度 773K, 押出し比 25:1 で熱間 押出しして P/M 材とした.

2.3 材料評価

MA 粉末, P/M 材の構成相の変化を調べるた めに X 線回折を行った.X 線強度を 40kV で 40mA とした.CuK 線を用いて2 = 20°~ 100°の範囲についてX線回折した.MA 粉末 および 2h での等時加熱後と 873K での等温加 熱後の P/M 材の硬さを測定した.MA 粉末の硬 さはマイクロビッカース硬度計を用い,荷重 10gf,保持時間 15s で測定した.P/M 材の硬さ はビッカース硬度計を用い,荷重 1kgf,保持時 間 15s で測定した.P/M 材の室温および 873K で 2h 加熱後の組織を光学顕微鏡で観察した. P/M 材を圧縮速度 1mm/min で室温にて圧縮試 験をし,圧縮破壊応力を測定した.

実験結果および考察

3.1 X 線回折

Fig.2 に一例として Al-Mg2Si-Cr2O3 系の MA 粉末,押出しまま材および 873K で 2h 加熱後 の X 線回折結果を示す.また, Table 2 には各 系の構成相をまとめた結果を示す. MA 粉末で は, すべての系で Al, 添加した Mg2Si, 金属酸 化物(Cr₂O₃, Fe₂O₃, MnO₂)からの回折ピーク が検出され, MA 中の固相反応は認められなか った.熱間押出しして P/M 材とした段階では, すべての系において Mg2Si と Si のピークが認 められたことから, Mg2Siの一部が分解したこ とより Si が生成した Al-Mg2Si-Cr2O 系の押出 しまま材では, Al, Mg₂Si, Cr₂O₃, Si, MgO, (Si,Al)2Cr のピークが検出されたことから,熱 間押出しの工程で Mg2Si,酸化物 Cr2O3の一部 が分解し,酸素の置換反応により MgO, (Si,Al)₂Cr が生成した . 873K で 2h 加熱後の P/M 材では,酸化物 Cr₂O₃がすべて分解し,三 元化合物 Cr₄Si₄Al₁₃のピークが認められ,加熱 による固相反応の進行により(Si,Al)2Cr から変 化したと考えられる.Table 2 に示すように

Fig.2 XRD patterns of Al-Mg₂Si-Cr₂O₃ system: a)as-MA powder, b)as-extruded and c)annealed at 873K for 2h.

Table 2	Constituent ph	ases obse	rved by XRD	in
	mechanically	alloyed	materials	at
	various therma	al stages.		

Material	MA Powder	As-extruded	Annealed at 873K for 2h
AMCR	AI , Cr₂O₃ Mg₂Si	AI , Cr ₂ O ₃ Mg ₂ Si , Si MgO , (Si,Ai) ₂ Cr	AI , Mg₂Si, Si , MgO Cr₄Si₄Al ₁₃
AMFE	AI , Fe₂O₃ Mg₂Si	AI , Mg₂Si, Si , Al₀Fe₂Si	Al , Mg₂Si Si , Al ₈ Fe₂Si
AMMN	AI , MnO ₂ Mg ₂ Si	AI , Mg₂Si MgO , Si Mn , MnAl	Al, Mg₂Si MgO, Si Mn, MnAl

Al-Mg₂Si-Fe₂O₃系, Al-Mg₂Si-MnO₂系の押し まま材では,添加した酸化物の回折ピークは検 出されず,Fe₂O₃,MnO₂はそれぞれすべて分 解した.Al-Mg₂Si-Fe₂O₃系ではMg₂Siからの Siと酸化物Fe₂O₃から還元されたFeとAlが反 応してAl₈Fe₂Siを生成した.Al-Mg₂Si-MnO₂ 系では,酸化物MnO₂から還元された Mn は Alと反応してMnAlを生成し,一部は単体で存 在した.また,Mg₂SiからのMgはMnO₂から 放出されたOと反応してMgOを生成した. Al-Mg₂Si-Fe₂O₃系,Al-Mg₂Si-MnO₂系のP/M 材を873Kで2h加熱後では,加熱による構成 相の変化は認められなかった.また,すべて系 の加熱後のP/M材で,添加したMg₂Siのピー クが確認された.

3.2 光学顕微鏡組織観察

Fig.3にAl-Mg2Si-Cr2O3系のMA粉末の光学 顕微鏡観察による組織を示す.MA処理を 30h 行うことにより,Al粉末内に Mg2Siや Cr2O3 が微細分散した組織が観察された.Fig.4 は Al-Mg2Si-Cr2O3系の押出しまま材および 873K で 2h 加熱後の P/M 材の光顕組織である.Al マトリックス中に数µm 程度の微細な化合物 粒子と Si と思われる粒子が微細分散している 様子が確認された.873K で 2h 加熱後では,加 熱により化合物粒子や Si 粒子の粗大化が確認 された.

3.3 硬さ特性

Fig.5 に MA 粉末および押出しまま材の硬さ を示す.MA 粉末では,すべての系で 200~ 280HV 程度の高い硬さが得られた.比較材の Al-Mg2Si 系に酸化物 Cr2O3 と Fe2O3 を添加し てMA処理することにより 酸化物がAl-Mg2Si 粉末内に微細分散し,Al-Mg₂Si-Cr₂O₃系, Al-Mg2Si-MnO2系でそれぞれ75HV,80HVの 硬さの増加が見られた.押出しまま材では, Al-Mg2Si 系で 200HV となり, Al-Mg2Si-Cr2O3 系, Al-Mg₂Si-MnO₂系でそれぞれ 249HV, 256HV となった .Al-Mg₂Si-Fe₂O₃系では ,MA 粉末において 208HV の硬さであったが,熱間 押出し工程での加熱により固相反応が促進し, AlsFe2Si などの化合物の生成量が増加したた め 295HV の高い硬さを示した .Fig.6 に押出し まま材および 873K まで 2h 等時加熱後の硬さ の変化を示す.酸化物を添加した系では,加熱 に伴う硬さの顕著な変化は見られず,安定した 硬さを維持した Fig.4 に示すように Al-Mg2Si-Cr2O3系の P/M 材を 873K で 2h 加熱後におけ る光学顕微鏡組織では、化合物粒子や Si の粗大 化が見られたが,硬さに大きな影響は認められ なかった.酸化物を添加していない Al-Mg2Si 系では,673Kまで安定した硬さを維持したが, その後の加熱により硬さが低下する傾向が見 られた . Al-Mg₂Si-Fe₂O₃系では, 773K まで硬 さが増加する傾向が見られ ,773K で 333HV の

Fig.3 Optical micrograph of as-MA Powder of $Al-Mg_2Si-Cr_2O_3$ system .

Fig.4 Optical micrographs of P/M materials of Al-Mg_2Si-Cr_2O_3 system.

a)As-extruded, b)annealed at 873K for 2h.

Fig.5 Hardness of as-MA powder and as-extruded P/M materials .

高硬度を示した.このことは,加熱温度の上昇 に伴い Al マトリックス中で Mg2Si の分解が促 進され,Al₈Fe₂Siの生成量が増加したことによ ると考えられる.Fig.7 に押出しまま材および 873K で 192h まで等温加熱後の硬さの変化を 示す.酸化物を添加した系では,873K で長時 間の加熱後においても顕著な硬さの低下は認 められず,安定した硬さを維持し,優れた耐熱 性を示した .酸化物を添加していない Al-Mg2Si 系では,加熱時間に伴い硬さの低下が見られた. このことは,873K での高温下で長時間加熱す ることにより添加した酸化物による酸素置換 反応の促進や Mg2Si の分解反応により, Al や 遷移金属元素とSiとの化合物やMgOの生成量 が増加したため,高い硬さを維持したと考えら れる.

3.4 圧縮特性

Fig.8 に P/M 材の室温における圧縮試験によ る最大圧縮破壊応力を示す.酸化物を添加して いない Al-Mg₂Si 系で 790MPa,酸化物を添加 した系では,900MPa 以上の圧縮破壊応力を示 した.Al-Mg₂Si-MnO₂系では,約1000MPa, Al-Mg₂Si-Fe₂O₃系では,弾性域での破壊であっ たが 1090MPa の高い圧縮破壊応力を示した.

- 4. 結論
- すべての系において,押出しまま材では, Mg2Siの分解や酸化物の置換反応の促進に より,MgOや金属間化合物を生成した.
- MA 粉末の硬さは ,200~280HV を示した . Al-Mg2Si-Fe2O3 系の P/M 材の硬さは ,最も 高い硬さ 295HV を示し ,773K で 2h 加熱 後では 333HV に増加した .873K で長時間 加熱後における P/M 材は ,酸化物を添加し た系で安定した硬さを維持した .
- P/M 材の室温における圧縮破壊応力は,酸 化物を添加した系で900MPa 以上を示し, Al-Mg₂Si-Fe₂O₃系では,弾性域での破壊で あったが,1090MPa の高い圧縮破壊応力 を示した.

Fig.7 Changes in hardness of P/M materils with heating time at 873K.

Fig.8 Compressive fracture stress of as-extruded P/M materials .

参考文献

 1) 菊地,菅又,金子:粉体および粉末冶金, 49(2002),19