経年戸建住宅及び各種機械用回転軸の高耐震化技術の発展と 地下埋設パイプの健全性評価技術の確立に関する研究 グループ

ナノファイバーによる樹脂と強化材の界面特性の向上

1 緒言

近年、新材料としてナノファイバーが注目を集 めている. ナノファイバーは繊維直径がナノサイ ズオーダーからサブミクロンサイズオーダーの 1nm~1µm, 長さが繊維直径の 100 倍以上のフ ァイバー状物質であり, 主に構成する物質は高分 子材料である.ナノファイバーには,第1に内部 の高分子鎖が一直線上に並ぶ超分子配列効果、第 2 に同じ重量の繊維に比べ 100~1 万倍に表面積 が増大する超比表面積効果、第3に市販の極細繊 維に比べて繊維直径が 1/10~1/1000 となるため 発現する3つの固有のナノ効果」が付与される. これら3大効果から生じる特性として、分子認識 性・吸着特性・流体力学特性・光力学的特性・電 気的特性・力的特性・熱力学特性などが挙げられ る. また, 以前の研究 2)結果から繊維強化プラス チック (Fiber Reinforced Plastics ; 以下, FRP) の繊維と樹脂の界面にナノファイバーを挿入する ことで FRP の強度向上を図ることができること が明らかにされた. 今回はナノファイバーをグリ ーンコンポジット開発に応用することを試みた.

本研究では、ナノファイバーの生成方法の検討 及びナノファイバーを塗布したケナフ繊維と非食 用バイオマスを中心に使用した不飽和ポリエステ ルからなるグリーンコンポジットの開発とその引 張特性評価を目的とする.

2 エレクトロスピニング法

数ある紡糸法の中で、容易にナノファイバーを 生成できる技術として、エレクトロスピニング法 が注目されている.エレクトロスピニング法は基

邊 吾一(日大生産工・教授) 今村 仙治(工学部・教授)

本的に溶液紡糸法であり,原理はポリマー溶液に プラスの高電圧を印加させ,アースやマイナスに 帯電したターゲット上に溶液を塗布する過程で繊 維化を起こさせる方法³⁰である¹.そのとき,ノズ ル先端から引き出されたポリマー溶液は溶媒が揮 発し,電気的な延伸を経てナノファイバー化され ていく(Fig.1).エレクトロスピニング法にはFig.2 に示すカトーテック株式会社製のエレクトロスピ ニング装置を用いた.

Fig.1 Principle of electro spinning

Fig.2 Electro spinning machine

3 ナノファイバーの生成

3.1 ナノファイバーの材料

ナノファイバーの材料には、植物由来であるポ リ乳酸 (Poly lactic acid, PLA) (三井化学製, レ イシア H-440), ポリアミド 6 (Poly amide 6, PA6) (東レ, アミラン CM1007), ポリエーテルサル フォン (Poly Ether Sulphone, PES) (住友化学, スミカエクセル PES4100G) の 3 種類を用いた.

3.2 PLAナノファイバー

エレクトロスピニング法でナノファイバーを生 成する場合、ポリマー溶液を作製する必要がある. PLA ポリマー溶液は溶質に PLA を用い、溶媒に はクロロホルムとアセトンを 2:1 の割合で混合し た混合溶媒 4)を用いた. 混合溶媒を用いた理由に は溶媒の揮発性のが挙げられる. PLA ポリマー溶 液は溶媒がクロロホルム単体でも作製することが できるが、クロロホルムでは揮発性が高く、PLA ナノファイバーを生成するのは困難である. そこ で、クロロホルムにアセトンを混合することで溶 媒の揮発性を下げ、PLA ナノファイバーの生成を 容易にした. また, ナノファイバーを生成するに あたって、ポリマー溶液の濃度が特に重要となる. 濃度が低すぎるとファイバー化せずにビーズと呼 ばれる粒子状の物質が生成され、濃度が高すぎる とファイバー化はするがファイバー径が大きくな る. そのため, 最適な濃度を選定する必要がある. そこで、PLA ナノファイバーを生成するための最 · 適濃度を選定するために 5wt%, 10wt%, 12wt% の3種類のPLAポリマー溶液を用いてナノファ イバーを生成した. そして, 得られた PLA ナノフ ァイバーを走査型電子顕微鏡 (Scanning electron microscope, SEM) を用いて観察した結果を Fig.3 に示す. Fig.3 (a) が溶液濃度 5wt%, Fig.3 (b) が溶液濃度 10wt%, Fig.3 (c) が溶液濃度 12wt% の観察結果である. Fig.3 より溶液濃度 10wt%の PLA ポリマー溶液から生成した PLA ナノファイ バーはビーズもなく,ファイバー径も最も小さく なったため、溶液濃度10wt%が最適であると決定

した.

エレクトロスピリング装置で PLA ナノファイ バーを生成するための塗布条件を Table 1 に示す. また,この段階では,強化繊維上にナノファイバ ーを生成するのではなく,市販のアルミ箔上に生 成を行った.この理由として,アルミ箔は SEM 観察が容易であり,ナノファイバーの生成条件を 選定するに当たって非常に適しているためである. 生成後は,Fig.3 (b)のようなナノファイバーの 不織布ができ,ファイバー径はおよそ 380nm~900nm であった.

Fig.3 PLA nano structure formed with electrospinning

Table 1 Electrospinnig condition of PLA nanofibers coating

Target speed	7.00m/min		
Traverse speed	25.00cm/min		
Syringe speed	0.08mm/min		
Distance to target	16cm		
Voltage	16kV		

3.3 PA6 ナノファイバー

PA6 ポリマー溶液は溶質 PA6 を用い,溶媒にギ 酸を用いた. PA6 ナノファイバーを生成するため の最適濃度を選定するために 17wt%, 20wt%, 23wt%の3種類のPA6ポリマー溶液を用いてナノ ファイバーを生成した. そして,得られた PA6 ナ ノファイバーを SEM で観察した結果を Fig.4 に 示す. Fig.4 (a) が溶液濃度 17wt%, Fig.4 (b) が溶液濃度 20wt%, Fig.4 (c) が溶液濃度 23wt% の観察結果である. Fig.4 より溶液濃度 20wt%の PA6 ポリマー溶液から生成した PA6 ナノファイ バーはビーズもなく,ファイバー径も最も小さく なったため溶液濃度 20wt%が最適であると決定 した.

エレクトロスピニング装置で PA6 ナノファイ バーを生成し,アルミ箔に塗布するための条件を Table 2 に示す.生成後は Fig.4 (b) のようなナ ノファイバーの不織布ができ,ファイバー径はお よそ 170nm~700nm であった.

(a) 17wt%

Fig.4 PA6 nano structure formed with electrospinning

Table 2 Electrospinnig condition of PA6 nanofibers coating

Target speed	7.00m/min	
Traverse speed	25.00cm/min	
Syringe speed	0.08mm/min	
Distance to target	16cm	
Voltage	16kV	

3.4 PESナノファイバー

PES ポリマー溶液は溶質 PES を用い,溶媒に ジメチルホルムアミドを用いた.PES ナノファイ バーを生成するための最適濃度を選定するために 20wt%,22wt%,24wt%の3種類のPES ポリマ ー溶液を用いてナノファイバーを生成した.そし て,得られたPES ナノファイバーを生成した.そし て,得られたPES ナノファイバーを SEM で観察 した結果を Fig.5 に示す.Fig.5 (a)が溶液濃度 20wt%,Fig.5 (b)が溶液濃度 22wt%の観察結果 である.溶液濃度 24wt%のPES ポリマー溶液は ポリマー溶液作製の段階で溶液濃度が高すぎたた め,飽和しジェル状となったためナノファイバー 生成することができなかった (Fig.6).また,こ の時の塗布条件を Table 3 に示す.

Fig.6 PES polymer solution become gel (24wt%)

Table 3 Electrospinnig condition of PES nanofibers coating

Target speed	7.00m/min	
Traverse speed	25.00cm/min	
Syringe speed	0.08mm/min	
Distance to target	8cm	
Voltage	8kV	

Fig.5より溶液濃度22wt%のPESポリマー溶液 から PES ナノファイバーを生成することが可能 であることを確認できた.しかし,ビーズや液滴 (溶媒が揮発せず,ターゲット上に付着したもの) といった粒子状物質が多く現れた.そこで,塗布 条件及び溶液濃度を22wt%に固定し,PES ポリ マー溶液に NaCl を 0.2wt%添加させた.この理由 としては,NaCl を添加させることでポリマー溶 液の導電性が向上し,ビーズの発生を抑える効果 が期待できるためである.その結果得られた PES ナノファイバーを SEM で観察した結果を Fig.7 に示す.Fig.7 は NaCl を添加することによりビー ズが減少したことを示している.したがって,溶 液濃度 22wt%,NaCl を 0.2wt%添加した条件が 最適であると決定した.

生成後は Fig.7 のようなナノファイバーの不織 布ができ,ファイバー径はおよそ 100nm~800nm であった.

Fig.7 PES nano structure formed with electrospinning (addition of NaCl)

4 ナノファイバーを界面に用いた FRP の作製4.1 FRP の構成材料

FRP の構成材料は,強化繊維に撚り糸状ケナフ 繊維束を平織りにしたケナフ織物(旭織物)(Fig. 8), 母材にバイオマス由来の不飽和ポリエステル(日本ユピカ)を用いた.また,ナノファイバーの塗布は FRP 成形前のケナフ織物に行った(Fig. 9).

Fig.8 Kenaf textile

Fig.9 Kenaf textile coated nanofibers

4.2 FRP の成形方法

片面のみにナノファイバーを塗布したケナフ繊 維織物2枚を用意し、塗布した面どうしが重なる ように積層した(Fig. 10). 下型(Fig.11 (c))と枠型 (Fig.11 (b))を重ね, 枠型の寸法 300×300mm にく り抜かれた部分に積層したケナフ織物を敷き、そ の上にバイオマス由来の不飽和ポリエステルを流 し込んだ、人力でバイオマス由来の不飽和ポリエ ステルをケナフ繊維に含浸させた後、上型(Fig.11 (a))を閉じて金型全体をフィルムで包んだ、そし て、フィルムを密閉し、真空ポンプでフィルム内 を真空状態にしながら,ホットプレスを用いて加 熱温度 30℃, 圧力 3MPa の条件で加熱圧縮成形を 行った(Fig. 12). 成形品は「ナノファイバー塗布 なしの成形品」、「PLA ナノファイバー塗布の成形 品」、「PA6 ナノファイバー塗布の成形品」、「PES ナノファイバー塗布の成形品」の4種類用意し、 成形品の繊維体積含有率は4種類とも約20%であ った. また, Table 4 に成形品の重量と塗布したナ ノファイバーの重量の割合を示す.

(a) Press plate (top) (*Same size as bottom press plate)

Fig.11 Press plates and picture frame

Fig.12 Molding technique

Table 4	Weig	ht ratio	of each	condition
---------	------	----------	---------	-----------

Condition	Weight ratio	
PLA nanofibers	0.93wt%	
PA6 nanofibers	0.77wt%	
PES nanofibers	0.52wt%	

5 静的引張試験

5.1 試験条件

成形品の評価は JIS K 7113 に従い, 静的引張試 験を行った. 試験片形状は幅 25mm, 厚さ 2mm, 長さ 250mm とし, 標点間距離が 150mm となる ように両端にタブを接着し試験片とした (Fig.13). また, 各条件に 5本ずつ試験片を用意し, 試験速 度 1mm/min で引張試験を行った.

Fig.13 Dimension of specimen

5.2 試験結果

とがわかる.

静的引張試験結果を Fig.14 に示し, 比較のため 代表的な応力-ひずみ線図を Fig.15 に示す. Fig.14より「ナノファイバー塗布なしの試験片」 に比べ「ナノファイバー塗布の試験片」は強度が 高く,破断ひずみが大きいことが示されている.

「ナノファイバー塗布なしの試験片」に比べ「PLA ナノファイバー塗布の試験片」は強度 27%向上, 破断ひずみ 15%向上,「PA6 ナノファイバー塗布 の試験片」は強度 47%向上,破断ひずみ 44%向上, 「PES ナノファイバー塗布の試験片」は強度 50% 向上,破断ひずみ 58%向上を示した.ヤング率の 変化は誤差の範囲内であった.また,Fig.15より ひずみ 0.2%以降は「ナノファイバー塗布なしの試 験片」に比べ「ナノファイバー塗布の試験片」は 非線形性が小さく,破断ひずみが向上しているこ

強度および破断ひずみが向上した理由としては, ケナフ繊維とバイオマス由来の不飽和ポリエステ ルの界面にナノファイバーが挿入されたことによ り,両者の界面接着性が向上したこと,および FRP 内部のナノファイバー層が亀裂の進展を遅 延させたことなどが考えられる.

Strain [%]

- 6 結言
- PLA ナノファイバーを生成するためのポリマ 一溶液は溶媒にクロロホルムとアセトンを 2:1 の割合で混合した混合溶媒を用い、最適濃度は 10wt%である、生成された PLA ナノファイバ ーのファイバー径はおよそ 380nm~900nm で あった。
- PA6 ナノファイバーを生成するためのポリマ 一溶液は溶媒にギ酸を用い、最適濃度は 20wt% である. 生成された PA6 ナノファイバーのファ イバー径はおよそ 170nm~700nm であった.
- PES ナノファイバーを生成するためのポリマ 一溶液は溶媒にジメチルホルムアミド、添加剤 に NaCl を 0.2wt%用い、最適濃度は 22wt%で ある、生成された PES ナノファイバーのファ イバー径はおよそ 100nm~800nm であった。
- 4)「ナノファイバー塗布なしの試験片」と比較して、「PLA ナノファイバー塗布の試験片」は強度 27%向上、破断ひずみ 15%向上、「PA6 ナノファイバー塗布の試験片」は強度 47%向上、破断ひずみ 44 向上、「PES ナノファイバー塗布の試験片」は強度 50%向上、破断ひずみ 58%向上した。

参考文献

- 本宮 達也, ナノファイバーテクノロジー 新 産業発掘戦略と応用, 株式会社 シーエムシー シー出版, (2004), pp.20-23
- 2) 邊 吾一,江川 達也,研究集会報告
 20ME-S8 ナノ複合材料等次世代複合材料の 創製及び評価,(2009), pp.18-21
- 山下 義裕、エレクトロスピニング最前線 ナ ノファイバー創製への挑戦、株式会社 繊維社 企画出版、(2007)、pp.2-3
- 4) 山下 義裕, 加工技術, Vol.41, No.9, (2006), pp.541-545.
- 江川 達也,邊 吾一,日本機械学会第17回 機械材料・材料加工技術講演会論文集,(2009), 202.